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ABSTRACT

This report presents results of a research effort to solve certain
approximation problems that arise in the computation of linear stationary

models of dynamical systems from given input-output data.

B.L. Ho's existence theorem states necessary and sufficient conditions
for strict realizability that are satisfied only in ideal situations.
Mathematical proof is given in this report that good dynamical simulation
is possible with linear models which represent partial, rather than minimal,
realizations. The restrictions of B.L. Ho's theorem do not apply to
partial realizations, and the class of partially realizable input-output
descriptions is large enough for practical purposes. For any normal
sequence of scalar Markov parameters, the transfer function of each partial

realization is shown to lie on the diagonal of the E-array corresponding

to the given-sequence. - The-proof is based -on-the classical theory of the
Pade’approximation. Relevant parts of this theory are reviewed and
developed in the report, including & new, stronger form of Pade”s

representation theorem.

As a by-product of this research, a sharpened, computationally more
efficient version of B.L. Ho's minimal realization algorithm was derived. The
new algorithm expresses every minimal realization of a given sequence of
Markov parameters in terms of the pseudo-inverse matrices (V*, WT).

The generating matrices (V, W) are familiar from the theory of complete
controllability and observability. The algorithm is shown to be the
sharpest possible, subject to the requirement that every minimal

realization be obtainable.
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I. INTRODUCTION .

The problems considered in this report were inspired by certain
questions raised by Dr. Bin~Lun Ho in his dissertation "On Effective

Construction of Realizations from Input-Output Descriptions” [6].

The object is to transform given input-output data of a multi-
variate process into another description more suitable for simulation.
In the case of stationary linear dynamical systems, which are the class
studied by B.L. Ho, a useful description mmey take the form of state-
variable differential (or difference) equations. From a practical
point of view, the derived description (called the "model”) should

meet the following criteria:

a. The model should reproduce the observed external behavior

patterns of the dynamical system with acceptable accuracy.

b. The construction of the model from the given input-output
data should be economically carried out on a computer, using available

or readily programmed routines.

¢. 'The model itself should be ameneble to economical simulation

on a computer.

These three criteria determine the quality, price, and operating cost
of the model.
B. L. Ho's methods meet the above requirements at least as well

as the known methods of other researchers. In fact, B. L. Ho's models




are called "realizations" precisely because they perfectly match given
input-output data. Furthermore, in the sense used by B. L. Ho, a
realization is a finite set of first-order linear differential equations
(expressed in terms of the coefficient matrices), and programming of a

realization for simulation therefore presents no special difficulty.

Suppose a given input-output sequence does not meet B. I,. Ho's
realizability conditions for a finite-dimensional model. Then two

questions arise quite naturally:

(1) Does B. L. Ho's method give a model whose external behavior
has approximating properties that make the model useful in simulating

studies?

(2) Can B. L. Ho's method be modified to further improve the

approximating properties found in (1)?

The present report covers the first phase of a continuing study aimed

at answering these two questions.

Chapter II of the report reviews basic theorems in classical
Padé approximation theory, i.e., the rational approximation of func-
tions represented by power series, in a neighborhood of the origin
of the argument. To prepare for application of the theory to the
problem posed by question (1) above, a new and stronger form of Padé's
representation theorem is presented (Theorem 2.5). In this chapter,
we also draw attention to some pitfalls which must be avoided when
generalizing results from normal to non-normal Padé tables. Examples

to illustrate this point are discussed. Anticipating later applications




to the theory of linear dynamical systems, the chapter concludes with

the definition of the E-array and its relation to the Padé table.

Chapter III concentrates on determinantal expresegions which play
a prominent part in the Padé theory. Such expressions have long been
known for normsl Padé tables, but Theorem 3.7, giving the determinantal
representation of the Padé approximant for the general case, does not
appear to have been stated or proved in the available literature. A
corcllary of the theorem, restricted to the normal case, indicates a

similar representatlion for the elements of the E-arrsy.

Chapter IV states two results of B, L. Ho's work which are perti-
nent to the present research, namely the existence theorem (Proposition
4.1) end the algorithm for minimal realizations (Theorem 4.4). By
appealing to the unique properties of the pseudo inverse, we are able

to sharpen B. L. Ho's algorithm in Theorem 4.9. Corollary 4.10 presents

the unique reciprocal relations between any minimal realization (F, G, H)

and the matrices (V, W).

Chapter V, like Chapter III, deals primarily with determinantal
relationships, but restricted to realizable sequences, i.e., to sequences
corresponding to rational functions. As a by-product, Corollary 5.5
generalizes one of B. L. Ho's theorems. Theorem 5.8 gives four mathe-
matical equivalents of the statement that & scalar sequence has a mini-

mal realization.

In Chapter VI, we generalize the concept of the realization of

a sequence by considering partial realizations and the associlated
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approximation problems. Theorem 6.5 proves that the partial realization
of a normal sequence ¥ (i.e., one for which Aéo) % 0, all positive
integers r) is closely related to the Padé approximants for the power
series X ykzk. Corollary 6.6 identifies the transfer function, of

the partial realization for normal ¢, with elements in the E-array

for the power series.

Chapter VII serves as a review of the results obtained. The
limitations of the work point to the need for further research, as

indicated at the end of that chapter.

Two appendices are included. The first one summarizes a few
definitions from algebra that are pertinent to Chapter II. The
second appendix briefly states definitions and properties of the

pseudo inverse of a matrix. These are used in Chapter IV.




II. THE PADE TABIE.

As pointed out in the Introduction; this chapter is concerned primarily

with properties of the classical Padd approximation.

After the definition of standard terms, we prove a lemms which will

later allow us to sharpen certain classical results.

Following the lemma, we consider the classical questions of existence
(Theorem 2.2) and uniqueness (Theorem 2.3) of the entries in the Padé table
for & given power series. The existence of Theorem 2.2 is proven by a

constructive approach designed to pave the way for Theorem 2.5.

Theorem 2.5 has not been found in the published literature on the
Padé approximation. It is a stronger form of the classical representation
theorem (Theorem 2.4). Its formulation will be used in subsequent sections
to link together the classical theory of the Padé sapproximation and the

more recent theory of controlled linear dynamical systems.

Theorem 2.6 gives precise meaning to the notion that the Padé
approximant is, in some sense, & "best' rational approximation to a given
power series. The proof of the theorem is followed by & short discussion

of its significence.

The possible existence of square blocks of equal approximants gives
rise to the distinction between normal and other Padé tables. This

important subject is introduced in Theorem 2.7 and its two corollaries.

The last section of the chapter deals with the E-array associated

with & normsl Padé table.




2,1  Definitions. [17, p. 378]

1. TLet

[ee]

flz) = X akzk (2.1)
k=0

be a formal power series in one variable, with real coefficients.¥*

Let (i, j) be an ordered pair of nonnegative integers.

The (i, Jj) Pade approximant for f dis a rational function

N, .(z)

Ry (6 2) = 3oy (2.2)

iJ

with the two‘properties (called the defining conditions of the approximant):

# 0,

I. deg Di‘ = i, D

J ij
deg Nij < 3 (2.3)
and I 2(z)Dy(z) - Ny (z) = (2113 (2.4)

where (zk) denotes a power series beginning with the term zk or a
higher power of z.*¥
2., The Pade table for f is the (doubly) infinite matrix

R(£) = [Rij], i=0,1, «o.f 3 =0, 1, ...; of Padé approximants for f.

3. The (i, Jj) Padd approximant for f 1is called normal if the

quotient Rij is distinct from all other qguotients in the table.

A formal power series f is normal if all of the Padé approximants
for f are normal, i.e. distinct. The Padé table for f 1is then also

called normal, and so is the sequence of coefficients (ao, & cee)e

*  For definition and brief discussion of the properties of formal power series,
as well as other terminology and definitions from algebra, see Appendix A.

*¥% In particular, we may have (zk) = 0.
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2.2 Existence and Uniqueness of Padé Table.

Lemma 2.1

Hypotheses:

1. (Ak: k=0,1 ..., i} 1is & set of vectors in the real
Buclidean vector space Ri, i>1.

2. The vectors % (k =0, 1, +.., i) span an r-dimensional

]

subspeace of Rl.

3. m is the largest index such that the vectors AF& Am+l,

are linearly dependent.

i
eee, A




Conclusions:

1. 0 £ i=-r = m < i (2.5)
2. The linear homogeneous equation
L k
L 4gA = O (2.6)
1&:=Odk
has a unique solution (do, dys eees di) such that
0 (k < m)
4 = (2.7)
1 (k = m)

Proof':

1. By hypothesis 2, r(s i) of the given vectors A% are linearly
independent, but any collection of r + 1 vectors from the given set are
linearly dependent. In particular, the vectors Ak (k=di-7r, i-1r+1, «u., i)

are linearly dependent. Hypothesis 3 then implies

2. Suppose A" # O.

The defining property of m now implies

(i) m < 4.

(ii) The vectors A" (k=m+1, m+ 2, ..., i) are all nonzero
and linearly independent.

(1i1) A™ 1ies in the (i - m)-dimensional subspace spanned by

the vectors A" (k =m+ 1, coo, i)




Therefore, the equation

m 1 k
A"+ % aAt = 0 (2.8)
k=1

a , d.).

has a unique solution (d oy cees 4y

m+1’

Existence of the solution follows from (iii) above.

To prove uniqueness, suppose (d!'

eoy A jere seco
1 5 l) v a second

solution of (2.8). Then
i
2 (4 - a)a® = o (2.9)

k=mr+-1

and (ii) above implies

4 = & (k =m+ 1, ..., 1).

The solution of (2.8), together with the values of d (k < m) given

by (2.7), satisfies the vector equation (2.6) and is unique.

m

Suppose A" =0, m= 1.

Then

4 =

is a solution of (2.6) satisfying (2.7), and clearly it is the only solution

satisfying (2.7).
m .
Suppose A =0, m < i.
Then, from the definition of m, we must have

A¥ £ 0 (k=m+1, m+ 2, ..., i)

and these vectors are linearly independent.

« Ow




Now substitute the values of d_ given by (2.7) into equation (2.6).
Then
i i
0 = A"+ = d.kAk = = d.kAk, since A" = O,
k=m+1 k=mt+1

By linear independence, we get the unique result

:ZL’.dkAk=O — 4 =0 (k=m+1, m+2 ... i).
k=m+1
Therefore
0 (k # m)
a, = (2.10)
1 (k = m)

uniquely satisfies both (2.6) and (2.7).

Theorem 2.2 (Existence Theorem) (Pad€) [11, p. 9]

Hypothesis: f(z) = = akzk, 8 £ 0.
k=0

Conclusion: For each ordered pair (i, J) of nommegative integers,
there exists a rational function Rij(f, z) satisfying the conditions T

and II of the (i, j) Padé approximant.

i
Proof: Let D(z) = = dkzk (2.11)
k=0
be & polynomial with undetermined coefficients (dey oo, di). Form the
product
Y x
f(z)p(z) = = C) 2 (2.12)
k=0
where
e = Z ad. (2.13)
utvek

- 10 -




The undetermined coefficients dk are chosen as follows:

(i) If i =0, take dy = 1. (e.1k)

(ii) If i >0, we set

¢ = 0 (k = J+1, 3+2, eouy, J+1) (2.15)

Written out, (2.15) is a system of 1 linear homogeneous equations
in the 1 + 1 unknowns do, dl’ “eey di’ and thus always has a non-

trivial solution. In metrix form, the system (2.15) is

ol Fgeir2 Ut By % 0
Bi-iv2 Pgeiaz 0t el i1 ©
. . cee . =1 (2.16)
&J. &J.+l e J+i . .
- o
a 0
A N

or, equivalently,

S aAT = 0 (2.17)
k::Odk
where
Bkt .
Ak = a € Rl
J=k+2 *
#j-k+i |

Let r be the rank of the [a] matrix in equation (2.16). Then
the vectors A" (k =0, 1, ..., i) and the integer r satisfy the

hypotheses of Lemms 2.1. ILet m = 0 be the index defined in the lemma.

- 11 -




By the conclusions of the lemma, (2.17) has a (unique) nontrivial solution

(do, dis ooy di) such that
(o (k < m)
1 (k = m)
Substitution in (2.11) gives
m I k
D(z) = z + X d,z (2.18)
k=m+1

The product f£D 1is therefore a power series of the form

D = N + (279t
m J k
where N(z) = agz + I ¢z . (2.19)
k=m+1

From (2.18) and (2.19):

deg D< i, D# 0, and deg N < j.

Thus D and N satisfy the defining conditions I and II of the

(i, j) Padd sapproximant for f.

Theorem 2.3 (Uniqueness Theorem) [17, p. 378]

Hypothesis: 1. f(z) = akzk.

oM™ 38

2. (i, j) is an ordered pair of nonnegative integers.

3. Each of the two pairs of polynominals (N, D) and
(N', D') satisfies the conditions I and II of the
(i, j) Padé approximant for f.

Conclusion:

N N'
T D

D

- 12 -




Proof: By hypothesis,

(1) fD -N = (2 wmmd st = [+ I ana
(1) £D' - ' = (29 e epp = (w0 + (22T,
Therefore
ND' - N'D (219, (2.20)

But deg[ND' - N'D] = 1+ j,

sy the left side of (2.20) contains no power of 2z with exponent higher
than 1 + J,

== the right side of (2.20) is identically zero,

smasdy ND' - N'D = O
N
ﬁ -5:

9=

2.3 Representation Theorems.

s .
Theorem 2.4 (Pade's Representation Theorem)[13, p. 421]

Hypothesis:
o0
k
1. f(z) = = aZ 5 8, £ 0.
0
2. (i, j) 4is an ordered pair of nonnegative integers, and

Rij(f, z) is the (i, j) Padé approximant for f.

Conclusions: There exists a unique pair of polynomials (Pij’ Qij)

and a nonnegative integer A such that

(ii) deg Pij s j- N deg Qij < 1= A




f e A 1+J+
(iii) =2'[f Qij - Pij} = (279 1)3 and

(iv) Pij and Qij are relatively prime.

Furthermore, the polynomials (Pij’ Qij) defined by (i) - (iv)

also have the property
P (2)
v) R..(f, z = .
(v) 13( , %) 5;;(;7
Proof: By definition of the (i, j) Padé approximant for £,

Rij has a representation

Ni.(z)
Ry( 2) = gy

1d

where Ni' and Dij are polynomials satisfying conditions I and II.

The greatest common divisor of Nij and Dij is of the form

ZAB(Z), where

Az 0
T v
B(z) =% bz, D, £0, r=0.
=0
Now there exist relatively prime polynomials Pij’ Qij such that
W,(2) = 2'B(2)P,(2), (2.21)
(5(2) = 2"B(2)gy(a), (2.22)
lJ(O) = a’o} QlJ(O) = 1. . (2'23)

By property II of the Padé approximant, we have
[f(Z)Qij(Z) - Pij(z)]Z%B(Z) . (M

(zl+J+l), since b, # 0.

[f(Z>Qij(Z) - Pij(z)]zx =

- 1k -




<
Next, deg Nij = 3
a2 deg [z%Pij] £ j~-r 5 3, by (2.21);
< 4 .
wms deg Pi;j = J Ae

Similarly, deg Dij = i

IA

=msd deg {ZAQij] £ i-r i, by (2.22);

ammsh deg Qij s i-A

Thus, we have shown the existence of polynomials (Pij’ Qij)

satisfying (i) - (iv). Conclusion (v) is immediate from (2.21) and (2.22).

The uniqueness of (Pij’ Qij) satisfying (i) - (iv) is shown

as follows.
By Theorem 2.3, Rij

i poles and J =zeros. Since Pij and Qij are relatively prime and

is a unique rational function, with at most

thus have no zeros in common, it follows from

P .
R, = oA

1 7 G,

that the zeros of Pi are exactly the same as the zeros of R with

J iy’
their multiplicities. By the Factor Theorem for Polynomials [16, p. 61]
[9, p. 121], the polynomial Pij is uniquely characterized (aside from
a constant factor) by its zeros. Therefore, the zeros of Rij’ together
with the condition Pij(o) = 8n; uniquely specify Pij' Similarly, Qij
is uniquely given by the poles of Rij and Qij(o) = 1.

Definition. The unique pair of polynomials (Pij’ Qij) postulated

in Theorem 2.4 is called the (i, j) Padé pair (for f).

- 15 =




Theorem 2.5

Hypotheses:

x

- k

1. £(z) = Zaz, a #O0.
k:Oak 0

2. (i, j) is an ordered pair of integers, i >1, j>0.

3. m is the largest index such that the column vectors

Am, Am+l, cons At are linearly dependent, where

&3kt
k .
AT = 85 ko (k = 0, 1, oes, 1)
¥y-k+i
a, = 0 for v <O0.
v
Conclusions:

(2.24)

1. There exists & unique pair of polynomials (P, Q)

(1) B(0) = ag Q0) = 13

(ii) deg P < J-m degQ < 1 - mj

(111) Z%fq - P] = (X7, ang

such that

2. The pair of polynomials (P, Q) defined by (i) - (iii) is the

(i, 3) Padd pair for f. That is, P and Q have the additional

properties
. Plz
(iv) Rij(f’ z) = AOR

(v) P and Q are relatively prime.

3. The index m has the additional properties:

- 16 -




(vi) m

satisfying

(P, Q)

where

(vii) Either

= MaX A

deg P<J - AN

is the

deg P=J - m,

the maximum being taken over all integers

deg Q <1 = A

(i, j) Padé pair for f.

or deg Q@ =1 - m.

A

(2.25)

- 17 -




Proof: The existence of P and @ 1is readily shown. Using the

same construction as in the proof of Theorem 2.2, we get two polynomials

N and D,
m i k
D(z) = z + L4z (2.18)
k=m+1
m J k
N(z) = ayz + I n.z (2.19)
k=m+1.

satisfying conditions I and II of the (i, j) Padé approximant for f.

Therefore
R (£ 2) = T (2.26)
Let
- J K=m
P(z) = z™N(z) = a .+ = n, 7
k=m+1
- k-m
lz) = =z mD(z) = 1+ I 4z .
k=m+1
Then (2.26) implies
P(z
Rij(f’ z) = I (2.28)
and P(0) = 8y Q(0) = 1; deg P < j-m deg Q < i - m.
Also, D - N = (2779 ana (2.27) imply 2™ fq - P] = (279D, (2.29)

Therefore the polynomials (P, Q) defined by (2.27) have the properties

(1) through (iv).

To prove the uniqueness of P and Q, we show first that P and

Q are relatively prime and then apply Theorem 2.4,

Certainly =z does not divide P or @, because of their form (2.27).

Suppose, now, bthat the polynomial

- 18 -




B(z) = 1+Dyz+ ...+ bnzn, 0=ns<min(i, j)-m (2.30)

divides P and Q. Then there are polynomials P¥ and Q¥ such that

P(z) B(z)P*(z)

i

Q(z) B(z)Q*(z) .

il

From equations (2.27) and (2.30), P* and Q% have the form

J=men
P¥(z) = ay + I piz
k=1
(2.31)
i-m=n K
Q(z) = 1+ = gz .
k=1
Consider now two polynomials N¥ and D¥, defined by
W (z) = 2" P*(z)
(2.32)
DF(z) = 2 Qr(z).
N¥, D¥ have the following properties:
deg N¥ < J, deg D¥ < i, D¥ £ 0
and (2.29) implies
SRl eqr - ] = (259
' (2.33)
TR
) DF - N (21+J+l n).
Furthermore, (2.31) and (2.32) imply that D* may be written
i k
D*(z) = & d¥z (2.34)
: k=0
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0 (k <m+ n)
) 1 (k = m+ n)

ag (k=m+n+l, m+n+2, .., i).

=M1l

The product fD¥ 1is a power series:

[29]

D% = I celézk
k=0
where
¥ = 2 audi.
utv=k

From (2.33) and deg N¥ < J we infer that the following coefficients ci vanishs
cﬁ = 0 (k=J+1, J+2, eos, J+1i). (2.35)

The i homogeneous linear equations (2.39 can be stated in the form of a

linear relation between the i + 1 column vectors Ak, with coefficients di:

i
X

5 aa® = o. (2.36)

%k

Substituting for d (k =0, 1, «ve, m+ n) in (2.36), we have

i
AR,y cngk = o. (2.37)
k=mn+l

By hypothesis 3, the linear dependence relation (2.37) implies n = O.

Therefore B(z) = 1, and P and Q are relatively prime, as claimed in {v).

Now f, (P, @ &and A =m satisfy the hypotheses of Theorem 2.L.
Since P and Q are relatively prime, Theorem 2.4 ensures the uniqueness

of the representation. This completes the proof of conclusions 1 and 2.
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To show m = max A, we note that because of (ii), m satisfies the

conditions (2.25) for A. It remains to show that no larger value of A

can satisfy (2.25).

Suppose Ay >m+ 1, and ), satisfies (2.25). Then deg P<J - m - 1,

deg @ <i - m = 1. Therefore, the two polynomials P, Q have the form

J=m=1 Kk
P(z) = = z, n, = a.;
k=0 nk 0 0
i-m-1 "
Qz) = = Z 0, = 1.
o %
Define e = Z 8 dv’ the coefficient of zk in the power series £Q.
ut+v=k
From z[fQ - P] = (zl+J+l) we obtain the two sets of egquations

0, 1, vvey, j =m=1),

n, o= ¢y (x

e = 0 (k=Jem J=m+1, eoe, J=m+1i).

In mabrix form, the second set reads

- sy R ot}

85441 B5.i42 Py i m-1 i
Biivn %j-i+3 SRR PR T | ©
. . o o . . = (2.38)
aj~ aj+l o o aj~m+i-L ‘ .
aj+1 aj+2 e . e aj-nﬁi d.O 0
L U . L

By the definition of m, the columns of the [a] matrix in (2.38) are
lineearly independent. Hence (2.38) can only have the trivial solution,

contrary to the reguirement do = 1, Thus we have proved that no value
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of A greater than m can satisfy (2.25). Hence (vi) follows, and (vii)

is a trivial consequence of (vi).
The proof of Theorem 2.5 is complete.

Relation between Theorems 2.4 and 2.5. Theorem 2.5 is a new and

stronger version of the classical representation theorem 2.4. Theorem 2.5
preserves the uniqueness property of the classical Padé pair and has

the added advantages that

1. it gives sharp upper bounds for the degrees of the polynomials
characterizing the (i, j) Padé pair for a given power series f;

2. 1t eliminates the classical requirement that the candidate
polynomials P, Q for the Padé pair be relatively prime. The property
of being relatively prime turns out to be a result of, rather than a
condition for, the choice of the pair (P, Q);

3. the index m appearing in Theorem 2.5 is uniquely determined

for each triple (f, i, j), while the similar parameter A appearing in

Theorem 2.4 is not unique.

The non-uniqueness of A is demonstrated in the following example.
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Example to Show Non-Unigueness of Ao

3
Let f(z) = l+z~§ = 1+ z+ zu + z

1=z

Ty 20, 18,00,

Padé table for f:

i i I L]
0 1 1+ 3z 1+ 2z 1+ = 1+ 2+ 2
] e ' . ) ,lm . ’
|
1 L
1 T 1+z 1+z P 1+z|1+z+2 |
‘mm_,_r._.._,_i._ I PU— J— __T;._.,_.ﬁ...,
1
| : )
2 leztz 1+ z 1+ z | 1+ 2 |1+ 2+ z l
| %
|
1 | 1 l+z+z2 l+z-z3 ]
3 1—z+ze-z3 l—z+z2-z3 l+zg-z3 1-23
S R _«_T*,-.__,|w___
2
1 | 1 1+2z+2 i |
L
Tezbzfezd | Tegtzfezs | 1tz-2
- e ol e e e —
i
i ' | %

By Theorem 2.4, the (i, j) Padé’ pair for f is (Pij’ Qij)’ where

(i) Pij(o) = ao) Qij(O) = l;
(ii) deg Pij < J-N deg Q,ij < i-N
(iii) zx[f Qij - Pij] = z?\{zl‘L T ces] = (zi+j+l);

(iv) P,., Q.. relatively prime.
130 %3
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The integer A (see conclusion of Theorem 2.4) has the following

admissible values for the given power series:

3 0 1 > 3 4 5 6
ool o 0 0 0 0 0 0
1] o | o 0,1 1 0 0, 1 1
> o | o 1 2 0 1 2
3 o 0 0 0 0 0 0
I 0 1 0 o 0,1 0, 1 0, 1
5 o o0 0 o 0,1 0,1, 2 0, 1, 2

For each pair (i, j), the index m (see Theorem 2.5) equals the

maximum admissible value of A.
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2.4 Padé 's Fundamental Proposition.

Theorem 2.6 (Padé ) [11, p. 12]

Hypotheses:

[e]

k
1. f(z) = g 8.2 5 8 £ 0.

2. (i, J) is an ordered pair of non-negative integers; and

(f, z) is the (i, J) Padé approximant for f.
3. (P, Q) are a pair of polynomials in z, with
deg P = j, deg Q = 1.

4. r is the largest integer such that

w(z) - B8 = ()

s 1s the largest integer such that

£(z) - Rij(f, z) = (z°).

Conclusions:

l. r = g; and

Pz
S@Rij(f, z) = Ok

\e}
1
i

Proof: Half of conclusion 2, namely

P
Rij = -Q-' @' I = Sy (2.39)

follows trivially from the definition of r and s in hypothesis L.

For the other half of conclusion 2, it suffices to show
r Z Sem»R . = S (2.L0)
1J Q

Then (2.39) and (2.40) together imply that r > s e=bp r =5, 1.e. 1 } s,

and thus conclusion 1 is validated.
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By Theorem 2.5, Rij(f’ z) has a unique representation
(5, ) - i (2.31)
R, \f, 2z = _l(T 2.41
ij Qij b
where the polynomials Pij’ Qij have the properties
(1) B,(0) = ey 9,0 = L
(ii) deg Pij < j-m deg Qij < i - m
s m _ _ i+3+1y |
(1ii) = [fQij Pij] = (z )s

with m =2 O defined in terms of the coefficients of £,

Properties (i) and (iii), together with (2.41), give

P. . .
£foR,. = -4 o (FITIFLmy
1j Qij
From this, by hypothesis 4,
0 = i+j+1l-m = s. (2.42)

Now suppose r 2 s. Then, again by hypothesis h,

P

P__4) - S [f-E = (25 - () = (2°
QT [£- R} - [£- 3] (z7) - (27) (z7)
amay P Qi,j = Pi,] Q = Q'ij Q (ZS)‘ (2’)4'3)

From the properties of the polynomials (P, Q) and (Pij’ Qij)’ we get

A

i+ J=-n

deg [P Qij]

i+ j-m

A

deg [Pij Ql
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so that the left-hand side of {2.43) has no powers of 2z with exponent
greater than 1 + J - m. But the right-hand side contains no powers of
7 with exponent less than s, s2 i+ J-m+ 1 by (2.42). Therefore the
two sides of (2.43) have no nontrivial terms in common, and each side must

vanish identically. Thus

PQij - PijQ = 0

and so, finally,

olvg

P..
= -Q—z’l. = Rij, by (2-)4-1)-
J

This completes the proof of the Padé Theorem.
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REMARKS: Padé called the theorem just proved "fundamental" to his
theory. One is therefore surprised to find that the place of this important

theorem in the Padé theory has been obscured in some recent work.

The distinction between the defining properties I and II of the
Padé approximation, and the conclusions of the Padé theorem, is most

clearly explained with the aid of an example:

2
Consider f(z) = cos z =1 - g— + +.., and let i=3=1.

The defining properties I and II give the (unique) numerator

and denonimator polynomials

Nll(z) = z = Dll(z).
Check: deg Nll = 1 = deg Dl = 1 = deg Dll’ and
£(2)Dy,(2) - Np,(2) = -53-+ = (&)
ll ll - 2 LI - @

Wow the Padé theorem asserts that the expansion of the quotient

N, (2)

Ry (f5 2) = D,,(2)

in ascending powers of 1z, agrees with more leading terms of the power
series for f than does the expansion of any other rational function
whose numerator and denominator are of degrees not exceeding j and i,

respectively.

In our example, then, Theorem 2.6 claims that, of all rational

functions of the form R(z) = %é}%, the unique one whose expansion agrees
with the most terms of
Z2
cos z = 1 = 5 t oees
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is Rll = l. The point to note is that the theorem does not yleld an
explicit numerical index that allows one to deduce & priorl how many terms

in the expansion of f are matched by the Padé aporoximant.

Such an index is, however, provided in the classlical definition of
the Padé approximant: Property II of the Padé approximant gives an
explicit least upper bound, namely Zi+j, on the powers of 2z which are

matched in the expansion
f(z)DiJ(z) - Nij(z>'

This distinction between the defining properties of the Padé
approximant, and the resulting properties asserted in the Padé theorem,
is not always respected in the recent literature. We give three specific

instances:

a. Baker, in his recent (1965) study of the convergence properties

of sequences of Padé approximants, states {1, p. 3]s

"In the [N, M] Padé sapproximant the numerator has degree M and
the denominstor degree N. The coefficlents are determined by equating

like powers of =z in the following equations:

ZM+N+1 + ZM+N+2 +

£(z)Q(z) - P(z) = A B .oy Q(0) = 1.0

where P(z)/Q(z) is the [N, M] Padé approximsnt to f£(z)."

This characterization is clearly inconsistent, as shown by taking

]

f(z) = cos z, M = N = 1., The first of the two equations gives

P(z) = Q(z) =2, A=-=; so QO) = 0 # 1.

i

o
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b. Shanks, in his 1954 dissertation [14, p. 21] characterizes

the Padé approximant for f by two properties:

"Property 1. Rkn may be written as the ratio of two polynomials:

Rkn = Nkn/Dkn

1 <
with the degree of Nkn = n and the degree of Dkn = k. But Dkn does

not vanish identically.
Property 2. The power series of R, agrees with that of f(z)
to a higher power of =z than any other rational function with degrees of

numerator and denominator no greater than n and k, respectively."

Shanks then cites Wall [17, p. 378] as a reference for the assertion:

"Property 2 is equivalent to the condition

( zk+n+l) . "

f(Z)Dkn T

Actually, Wall neither proves nor even states that the two conditions are
equivalent. The weakness of Shanks'® claim is evident from the same

counterexample used before;

For f(z) = cos z, N, =Dy =1 satisfy Shanks' properties 1 and
2, yet
22 3
f(z)Dll-Nll = =5t .. £ (z7).
c. In his 1962 book Matrix Iterative Analysis, Varga [15, p. 266]
rel
defines the Padé approximant for f(z) = & avzv as the quotient of

v=0
polynomials npq(z) and dpq(z) which are respectively of degree g

and p. Assuming
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Varga now selects for each pair of nonnegative integers p and ¢ those
polynomials npq(z) and dpg(z) such that the Taylor's series expansion
of npq(z)/dpq(z) about the origin agrees with as many leading terms of

f(z) as possible. Varga then claims "it is evident that the expression
. prqtl
d {z)flz) - n_(z} = 0O(|z A 0
o (D22 =0 (2) = o(|2PFh), 2] S,
gives rise to p + g + 1 linear equations in (the unknown coefficients),
whose solution determines these unknown coefficients."

The inconsistency of Varga's assertions 1ls readily evident from

the previously used counterexample:

For f(z) = cos z, dll(o) £ 0 ugb’dll(z) =1 and nll(z) = 1, but

2
dll(z) cos z = nll(z) 2 - %m # O(|Z|3).

To place this dlscussion in proper perspective within the Padé
approximation theory, the following should be added. First, it is of
course possible to consgtruct & consistent theory of the Padé approximation
using Varge's definition. Cheney (1966) {2, p. 174] has teken this

approach, carefully avoiding the pitfalls along the way.

Second, the two approaches are equivelent for that cless of functions
which have & normel Padé table. This assertion will be proved in

Corollary 2.9, with the aid of the next theorem.
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2.5 Normsl Padé Approximants.

Theorem 2.7 [13, p. 425] [17, p. 394]

Hypotheses:
o]
k
1. f(z) = Zaz, a £0
oo k 0

2. (i, j) is an ordered pair of nonnegative integers, and

Rij(f’ z) is the (i, j) Padé approximant for f.
3. (Pij’ Qij) is the unique (i, j) Padé pair for f,
with
deg Pij = P, deg Qij = q. (2.44)

Conclusions:

1. There exists a nonnegstive integer r such that the power

zp+q+r+l

series [f Qij - Pij] starts exactly with the power , or elge

f Qi' - P,. =0, In the latter event, we set r = «.
J 13

2. The (q+ rys P + rg) Padé approximent for f equals

R, ., with
1iJ

T, Ty = 0, 1, eve, * in case r 1is finite,
and ryy I, = 0, 1, «ad in case r 1is infinite.

3. No entry other than those enumerated in conclusion 2 is equal

to R...
1J

Proof: The defining properties of the Padé approximant imply
0O <p<dJh O0< aqa g i (1)

gl
£Q; - Py = (z ). (11)

Assertion 1 of the theorem is immediate.
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By hypothesis 3, (Pi,j’ Q,lJ) have the following five properties

(reference Theorem 2.4):
(i) »Pij(o) = 3'0) Q'i{j(o) = l;
(ii)PSj“A} g < i-) A > 0;
(iii) A+ p+aq+1r > i+ J;

(iv) Pij and Qij are relatively prime;

Pi.(z)

(v) Rij(f’ z) = -jS-lz—z-T .
dJ

To prove assertions 2 and 3 of the theorem, let (u, v) be a pair
of nonnegetive integers. By Theorem 2.4, necessary and sufficient conditions

for

R‘L}.V(f’ Z) = Pl,j(z)/Qij(z) (2-14‘5)

are that there exists a nonnegative integer k such that

p < v-k e < u-k (2.46)

k+p+qg+r > u+v. (2.47)

Our task is to solve these inequalities for wu, v, and k(> 0).
Condition (2.46) is equivalent to

u+ v

v

ut+ k+p
u+v > v+ k+q
or, combined with (2.47),
u+ k+op

k+p+gt+r > u+v > .
v+ k+ g
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Hence

a+r > u p+r > v. (2,48)
Moreover, k > O and (46) implies
u > q v > p
so that the following conditions are necessary for (2.45):
q+r_>_u_>_q_, p+r_>_v_>_p. (2_49)

The inequalities (49) validate assertion 3 of the theorem.

To complete the proof of the theorem, we only need to demonstrate
that for each choice of (u, v) in accordance with (49), there exists

an integer k > 0 satisfying (46) and (47). We choose

k = min (u-q, v - p). (2.50)

Then k<u-gq, k<v-p imply (2.46).
Suppose u - ¢ <V - D.
Then

k+p+q+r (u-g +p+g+r

1l

u+p+r

> u+v, by (2.49).
Similarly, uw - q>V -p == k+p+qg+r>u-+v, by(2.49).
Fherefore (2.47) is satisfied by k as defined in (2.50).

It follows that '2.49) are both necessary and sufficient conditions

for (2.45), and assertion 2 verified.

Agsertions 2 and 3 are verified.
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Remarks: Wall [17, p. 395] calls r the order of the (i, j3)
Padé approximant. When the approximant Rij is normal, it is distinct
from all other entries in the Padé table, and thus r = O. For this

case we have the following corollary of Theorem 2.7.

Corollary 2.8 [13, p. 425]

Hypothesis:
w0
k
1. f(z) = ZXaz, a, #O0.
kO X 0
Ni,(z) ,
2. R,.(f, z) = wmiT~7 is the (i, j) Pade sapproximant for f,
i Dij z
with Nﬁj and Dij relatively prime.

Conclusion: The following conditions are necessary and sufficient

for R, to be normal:

i

(1) aeg Nij = J, deg Dij = i.

(11) The expansion of f Dij - Nij in ascending powers of 2

Lhjkl (not with a higher power).

starts exactly with the power =

Proof':
Sufficiency: Suppose (i) and (ii) are true. Apply Theorem 2.7.
Then p=J3, q=31 =% r = 0 by conclusion 1 of Theorem 2.7, eand Rij is

normal, by conclusion 3.

- 35 -




Necessity:

Let (Pij’ Qij) be the (i, j) Pade'! pair for f. By the

uniqueness of Rij’
P, . N, .
i R
Qi 13

Since both quotients are clear of common (nonconstant) factors, the
numerator polynomials are equal up to a constant factor, and the denominator

polynomials are equal up to the same constant factor.

Applying Theorem 2.k, there exists A > O such that

p = deg Pij = deg Nij <J-=-A
q = deg Qij = deg Dij <i-A
_ i+ j+l-A
and [fDij - Nij] = (z ).

By Theorem 2.7, there exists r > 0O such that
i+3J+1-N < p+ag+r+l. | (2.51)

a. Suppose p+ q <i+ J, that is, (i) is not satisfied.

If A =0, then (2.51) implies
i+j4+41 < i+j+r+1,
therefore, 0 < r.

If A>0, then p+g<i+ J- 2N, by definition of A. This,together

with (2.51) implies i+j+l-M < i+j-2Mr+l, so O <A <r and O <r.
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Now O <r implies that Rij is not normal, by Theorem 2.7, Contlusion 2.

By contraposition, Rij is normal only if p + q> 1+ j. But
J>p 12>4q. Thus (i) is a necessary condition for Rij to be normal,

since

J 2p 2i+i-q 2z § == p =J;
i > q > i+j-p > i memep g =i
b. Suppose (ii) does not hold.
Then the expansion of f‘Dij - Nij in ascending powers of 2z starts
with zi+j+r+l, r > 0. Agsain, by Theorem 2.7, Rij occurs in at least U4

positions of the Padé table E . Rij is not normal. This completes the

proof of the corollary.

Corollary 2.9.

Hypotheses:
Y x

1. f(z) = = akz s &y # 0.
k=0

2. The Padé table (R, (£ z)] for f is normal.

3. (i, J) is an ordered pair of nonnegetive integers.

L. Nij’ Dij are polynomials, deg Nij <3, deg Dij < i, D:‘Lj 4 0.

Conclusions

The following two conditions are equivalent:

(1) £(2)Dy,(2) - Wyy(z) = (7T
iy m, 5(2) i+ J+1
() #(2) - 5igy = .
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Proof:

If (i) holds, then hypothesis 4 implies

Ni.(z)

5z = Ris(fo2)
13

and

N .

fowid = £ oR, ..
D. . i3
ey

But the Padé table for f is normal. Therefore, by Corollary 2.8,

the expansion of f(z) - Rij(f’ z) in ascending powers of z starts

exactly with the power zl+J+l, and (ii) follows.

Now suppose (ii) holds. ILet (P, Q) be the (i, j) Padé pair

for f. Since f is normal, Corollary 2.8 implies that the power series

fQ - P starts exactly with the power L A Q(0) =1, so the
expansion of f - % = f - Rij starts with the same power zl+J+l.

Theorem 2.6, Conclusion 1, we have for the given polynomials Nij’ Dij (hypothesis %)

By

£ - W, ./D (z'), r < i+3+1,

13

]

iy
since deg Nij < Jj, deg Dij~5 i. But r > i+ j+ 1, because of (ii).
Theorem 2.6, Conclusion 2, ghows that r =i + j + 1 implies

Mo or o_ . (2.52)
D Q - ij' )

The polynomials P and Q are relatively prime, and deg P = J,
deg Q = J, because f 1is normal (Corollary 2.8). But this, combined

with (2.52) and hypothesis 4, gives




il

j > deg Nij > deg P J == deg Nij = (2.53)

1l
e

j 2 deg D, > degQ = 1 === deg Qij (2.54)

d

i

Together, (2.52 - 2.54) imply Nij ch, Dij = ¢cQ, for some constant

¢ # 0. Therefore

itg+l
(27797,

fD, ., - N., = %[fQ - P] (2.55)

1d +d
by Corollary 2.8(ii). Thus we have shown (ii) == (i).

The proof of Corollary 2.9 is complete.

2.6 The E-Array

So far, we have considered rational approximetions related to power

series of the form

f(z) = Zakzk, B, # O. (2.56)
k=0

In connection with the theory of linear dynamical systems to be taken up
in Chapter IV, V and VI, we will be looking for transfer functions which

approximate series of the form

0
k-1
Z(s) = Z &, s . (2.57)
k=0
Of course, the series (2.56) and (2.57) may be transformed into
each other by means of the simple relationships
£(z) = z7z(z™h) (2.58)
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72(s) = s te(s7Y). (2.59)

However, the following important distinctions between the two series

are observed.

(1) If the series (2.57) is rewritten as a power series in z = s 7,
the constant term is zero, thus violating a condition which has been

assumed in the development of the Padé approximation theory.

(ii) The Padé table is essentially a symmetric structure in the

sense that the power series expansion of [f(z)]—l has the same form as

6a]

that of f(z). In contrast, the power series expansion of [Z( )]-l has

not the same form as that of Z(s).

Definition: Suppose f and Z are given, as in (2.56) and (2.57),
and suppose the Padé table for f is normal. Following Wynn [30, p. 149],
we define the E-array for Z to be a lower triangular matrix with rational

elements ég)(Z, s) of the form

(3)
2z, &) - i (=) (2.60)
i Qiai(s) .

where an) is & polynomial of ith degree,
(3) Lo(3) .k
& (s) z q)s", (2.61)
k=0
PgJ) is a function of the form
. . i+j-1 .
P gy o 53 5 P& O L oo (2.62)
i k=0 ik 0
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and the series expansion of Eéa)(z, s) in inverse powers of s agrees

with that of Z(s) as far as the term containing s721"J. The elements
of the E-array sappear in the order shown below:
(0
Eél) E:(Lo)
Eéz) Egl) Eéo)
Eés) Eie) Eél) Ego) (2.63)
A C IO

(3) stands at the intersection of the (i + 1)th column

The element Ei

and the (J + 1)th diagonal.

Clearly, the constituents Pga), an) of the function EgJ) may
be displayed in the same arrangement. If we specify qgg) =1 in (2.61),

then, by Corollary 2.8,

i
.

sis) = q

i i,i+jnl<z)’ 8z
and (2.64)

S-i+lp§j)(s) = Py 451020

where (an, Qnm) is the (n, m) Padé pair for f.

The close relationship between the Padé table and the E-array is

shown even more clearly in the following proposition.

- b1 -




Proposition 2,10 [30, p. 150]

Hypothesis:
X
Suppose fz) = Zaz, a. # O, (2.65)
k 0
k=0
and the Padé table for f is normal.
Conclusion: If we define Z(s) = % a s—k—l, sz = 1, then the

k=0 &

whole E-array for Z may be obtained from the Padé table for f by
btransposing the Padé table, deleting the terms lying above the super-
diagonal (i.e., the diagonal starting with the second term of the first
row in the trénsposed table), and placing the quantity Eéo) = 0 at the

peak of the array.

Conversely, part of the Padé table for f may be obtained from

the E-array for Z Dby removing the entry Eéo)

(1)

i 2

and transposing the

E~-array about the diagonal E i=0, 1,

Proof: The (i, j) Padé pair (Pij’ Qij) may be regarded as

a vector palr

(pio) pil) MR pij)’ (qoj) qlJ) Sl qu) (2'66)

so that

]

J
PiJ(Z) (Pio’ pll’ vy pl,j)(l, Zy, weey Z)

(2.67)

1

i
(quJ qu) el qij)(l, Zy oesy Z )"

(3)

i

Qij(Z)

Similarly, the entry E in the E-array may be regarded as a vector pair

(3 _(3)

(2307 4175 o5 Piliig

9 s @ o el (2.68)
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so that, by (5.17) and (5.18),

(5) Sl (9 | -1
Pi (s) = s (Pig); Pgi): soey PJE;]]?__*_:I_,]_)(]-; 85 eeey; 8 J )’

(2.69)

|
—_
e

g_g>; q,ii); vy Q.gi))(l) Sy eeey Si)i‘

ol (s)

Now substitute in (2.64), using the appropriate expressions shown on the
right of (2.67) and (2.69), to verify the assertions made in the

proposition.

2.7 Padé Approximation for Power Series of Nonnegative Order

The classical definition of the Padé table assumes that the power
series to be approximated has a nonzero constant term [11], [13], [1k],
[17). The assumption of zero-order series serves the purpose of simpli-
fying the statements and proofs of theorems. The restriction can be

removed without difficulty, as will now be shown.

Existence (Generalization of Theorem 2.2): "Let g be a nonzero

power series of order o = o(g); that is,

g(z) = z° £(z) (2.70)

where

L)
—
[a]
~
i}
™
o
N

-

ao % 0.

Let (i,)) be an ordered pair of nonnegative integers, j > o. Let
m= j~-o, and let (Pim’ Qim) be the (i,m) Padé pair for f, defined

as in Theorem 2.4. The (4i,J3) Padé approximant for g is

Z Pim(z)

Rij(g,z) N O (2.71)

im
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Proof':

I. deg Qy <i, by definition of Padé pair;
Qim(O) =1, by Theorem 2.4;
deg[ZGPim] <J, by definition of Padé pair.
o o
iI. gQim z Pim =z [fQim_ Pim]
_ Zg(Z1+m+l)
1+J+1
= (2777

The defining conditions of the Padé approximant for g are therefore

satisfied by the pair of polynomials ZUPim(z) and Q (z).

For 0 < j <o, we take Rij(g,z) = 0, corresponding to Nij =0,
D, = z* in equation (2.2). Clearly,
I = i
deg Dij i Dij % 0,
deg Nij =0<J ;
. {rial
II. &(z)Dy - W, = 22T (z) = (27T (2.72)

Uniqueness (Generalization of Theorem 2.3): Having proved the
existence of Padé approximants for general power series, the restriction

a, ¥ 0 can now be deleted from Theorem 2.3. The proof is unchanged.

Padé Representation (Generalization of Theorems 2.4 and 2.5):

Suppose the power series
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oo
g(z) = % a.z

is of order o = o(g). Let (i,j) be an ordered pair of nonnegative
integers and Rij(g,z) the (i,3j) Padé approximant for g. The con-
clusions of Theorem 2.4 remain valid for g, except conclusions (i) and

(iv), which must be changed to read:

(1%) P, .

—~~
3
-
L]
O
Na
O
—~~
N
p—
it
N
-
(NS
o
N

J < o;

z —= 0

iv¥ P and @ are relatively prime, provided that J > g.
’ o

Proof:

1. - Represent. .g .as the product zof(z), where f(z) is a power

series with nonzero constant term.

2. For J >0, let m = j-o. The Padé pair (Pim’ Qim) and
the integer X > O postulated in Theorem 2.4 for f exist and are

unique since f satisfies the hypothesis of Theorem 2.k.

3. Tt is easily verified that, for Jj > o, the pair (zoPim, Q)
and integer A satisfy (i%*), (ii) and that
e A _ i+m+l
(11J‘) Z [fQim Pim] - (Z )
implies
A o RS AN R
z [%Qim z Pim} = (z ) s (2.73)
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(iv) P, s> Q, being relatively prime and Qim(o) =1 imply

o . .
that =z Pim and Qim are relatively prime;

Pim(z)
(V) Rim(f)z) = Q‘ Z
im
implies
o Pim(z)
Rij(8:2> =2 3 () " (2.74)

4L, For j < g, the proof leading to equation (2.72) applies, and
the padé pair (0,z”), with A = 0, satisfies conclusions (i¥), (ii),

(iii) and (v).

To extend Theorem 2.5 to the general case, it is necessary only
to change conclusion (i) to (i¥), and (v) to (iv*), as stated above,

with corresponding obvious modifications in the proof.

Padé's Fundamental Proposition: ILet f be a nonzero power series,

and let o(f) denote the order of f. Theorem 2.6 was proved for

o(f) = 0. It remains true for o(f) > O.
Proof: Let (i,j) be an ordered pair of nonnegative integers, and
let P, Q, r, s be defined as in Theorem 2.6.

For J > o(f), the proof of the generalized version of Theorem 2.6

completely parallels the proof given in section 2.k,

Suppose O < j < o(f). Then Rij(f,z) = 0, and
f(Z) _RlJ(f)Z> = (ZS) (2‘75)

where s = g(f) > j+1.
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We will show that r > s == = = O. Then it follows that v } s,

ol

and the proof will be complete.

Certainly, by hypothesis 4, r > s and Rij = 0 imply

ol
i
—
[
m
~
as}
]
—~
g
&)
O

= [£-Ry1- 2 - £ = (2°) - (7)

y (2.76)

The left-hand side of (2.76) has no powers of 2z with exponent greater
than Jj, while the right-hand side contains none with exponent smaller
than s > j+1. Therefore the two sides of (2.76) have no nontrivial

terms in common, and each side must vanish identically. Thus

and

Normal Padé Approximants. Theorem 2.7 and its corollary 2.9 are

generalized as follows.

Theorem 2.11

Hypotheses:
[e0]

1. f(z) =2 akzk, o = o(f) is the order of f.

2. (i,J) dis an ordered pair of nonnegative integers and Rij<f’z)

is the (i,j) Padé approximant for f.

3. (Pij, Qij) is the unique (i,J) Padé pair for f, with

deg Pyy =0, deg Qg5 = q - (2.77)
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Conclusions:
1. There exists a nonnegative integer r such that the power

Zp+q+r+l

series [fQij— Pij] starts exactly with the power , or else

fQ,.-P,. =0 and 1 = «.
1d 1J

2. The (q+r,, p+r,) Padé approximant for f equals R,,, with
1 2 i3’

in case r 1is finite

=
1
O
A
H
.
A
L}

and

in case r dis dinfinite.

~
H
O

.
ot

3. No entry other than those enumerated in conclusion 2 is equal

to Rij’ provided Jj > o.

Proof: The special case ¢ = 0 was treated in Theorem 2.7.

Suppose 0 <o < j. By the generalization of Theorem 2.4,

(*)  lim [27°P (2)] =a_, Q;(0) =1
z — 0 i o

Also, there exists an integer A\ >0 such that

(i1) p<J-h, g <i-Nj;
(111)  2Mfq,, -P, ] = (z779)
ij id ?
(iv) Pij and Qij are relatively prime;
P, (2)
R, .(f = .
(v) lJ( )Z) Qi’jizs

From (iii),

£q..- P, = (M
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But i+j-A+l > p+g+r+l, so either there is an integer r > N satisfying

asgertion 1, or fQij -Pij = 0.

Let (u,v) be a pair of nonnegative integers. By the generalized
Theorem 2.4, necessary and sufficient conditions for
P, ,(2)
Ruv(f,z) = QESTET (2.78)
are that there exists a nonnegative integer Xk such that

p<v-k, qg<u-k (Theorem 2.4, ii)

and

K+p+Q+T > utv (Theorem 2.4, iii).

These conditions are equivalent to

u+k+p
K+p+Q+r > utv >

Since k >0, we obtain

ar >u >q pH >V > p . (2.79)

The inequalities (2.79) validate assertion 3 of the theorem, for J > o.
The proof of assertion 2 is identical to that given in the context of
Theorem 2.7 (see p. 34).

Counterexample to show Theorem 2.11 fails for J < o.

Consider f = zj and J = 0,1,2. For every nonnegative integer 1,

the (i,j) Padé approximant is Rij(f’z>' The Padé table for f = z° 1is
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shown below. Similarly, every function f of order o >0 has a Padé
table whose ¢ leading columns are zeros. By definition, the Padé

tables for all such functions are anormal.

Padé Teble for f = z° .

Corollary 2.12

Hypotheses:
e k
1. f(z) = 2 az , o = order of f.
0 k
N, 4(2) . : .. ) .
2. Rij(f’z) = 523(27 , J >0, is the (i,J) Pade.approx1mant
for f, with Nij and Dij relatively prime.

Conclusion:
The following conditions are necessary and sufficient for Rij to
be normal:

(i) deg Nij =3, deg Dij =1>0

(ii) The expansion of [fDij-Nij] is of order i+j+l.
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Generalization of Corollary 2.9 and Proposition 2.10.

In view of Corollary 2.12 above, the requirement 2 £ 0 dis implied
by the hypothesis that f has a normal Padé table. Therefore, it is not

necessary to state explicitly that a # 0.
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¢
JII. REPRESENTATION OF PADE  APPROXIMANT BY DETERMINANTS.

In Chapter 2, we were concerned with properties of the Padé table
[o0]
for arbitrary power series f(z) = X akzk, 2, # 0. We continue this
k=0 '
investigation in the present chapter, with the aim of expressing the Padé

approximants for f as the ratios of determinants, explicitly in terms

of the coefficients of f (Theorem 3.5).

One of the properties of the Padé +table discussed in Chapter 2 was
the geometrical pattern that governs the occurrence of equal approximants:
If the table for a power series f contains two equal Padé approximants,
then there must be a square block of (r + 1)2 equal approximants
(Theorem 2.7). Frank [21, pp. 92-94] gave necessary and sufficient
conditions for the Padé table for f to contain a square block with

corners (q, p), (e + 1, p), (a+7r, p+ 1), (¢, p+r), where p, g, and

r are arbitrary nonnegative integers (Theorem 3.5). We include a proof

of Frank's theorem that is, perhaps, a little easier to follow than the

versions given in the original paper or by Wall [17, pp. 395-398].

Theorem 3.7 expresses the Padé approximant for the power series f
explicitly in terms of the coefficients (ao, o ...) of the series.
The beauty of the method lies in the fact that it proceeds directly to the

computation of relatively prime numerator and denominator polynomials.

The method thus avoids any problems that might arise if the Padé
approximant is to be cleared of common factors in the numerator and

denominator.
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3.1  Definitions.

The following notation will be used for certain fregquently recurring
Hankel matrices and determinants: Giwen the sequence {ak: k=0, 1, ...}

and two nonnegative integers r, n, we define

&y n+l o Sptr-1
w1 Cmie 0 o
g(n) (3-1)
I
B Sl Sty ‘ an+2r—2w
Ain) = det Sim (r >0)
(3.2)
(n) _
AO — 10

Moreover, for given nonnegative integers i, J, N, and for a given

power series T

Yk
f(z) = N Z
1<:=Oa’k




let AN denote the Nth partial sum of £, that is

N

Ay(z) = kz?O&ka‘ (3.3)

Taking a, = 0 for n <0, we define

i i-1 o,
zZ Aj—i .z Aj»i+l o o s Z Aj
Fy-ivl Fg-ise oo B
T..(z) = det
1J
a ., a ., « e .,
L J J+l i
(3.4)
_ -
i i-1 0
V4 Z Z
Fi-141 %j-iee ¥l
U, .(z) = det
L
a, . a, o “ e a. ..
J j+1 J+1d
In particular, these definitions imply the following properties:
deg Tij < 3 deg Uij 5 i, (3.5)
= = .6
Tos A Ups 1, (3.6)
_ i, (j-i+1)
ij(o) = (- 1) AJ.Ai
(3.7)
b (0) = (- 1)iald-itD)
ij i ’




3.2 Some Properties of Hankel Determinants.

Certain properties of the Hankel determinants Ain) will be useful

later. These properties are stated in the following two clagsical lemmas.
Lemms, 3.1. [23, p. 120][4, p. 25]

For all positive values of n and r,

Aé‘n—l)éé‘n-kl) _ Aéﬁil)éé?;l) (3.8)

(n)q2
(8™

the determinants being those defined in equations (3.1) and (3.2).

The proof of this lemma is straightforward, but tedious and not
very enlightening. Householder [24, pp. 116-117] indicates the proof
for r =1, 2; Henrici [4, pp. 25-26] sketches a similar verification

for all admissible r.

Lemma 3.2. [%, p. 28] (i) Bieberbach's version [25, pp. 319-321]:

Let f(z) = 2 akzk be rational,
k=0
D

bO + blz + eee bpz

f(z) = » S £0, c_# 0. (3.9)
Co ot ezt ve. +c 2zt 4
O 1 q

Then
A<n) = O for all n > max (0, p - g + 1).
g+l - ’

Conversely, let p and q be integers such that p > q - 1, and Aén) # 0,

Aéﬁi =0 for n>p-q+ 1. Then f(z) is a rational function of the

form (3.9), with cj £ 0, °q # 0.
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(ii) Dienes' version [26, p. 323]:

The necessary and sufficient condition that the power series

o

Zakzk should represent a rational function is that there be & number g

0
such that £ Aé:izn = P(z) is a polynomiagl. Then the least value of g

is the degree of the denominator, and the degree of P(z) is not less

than p - g P Dbeing the degree of the numerator.

3.3 Conditious for a BlockK in the Padé Table.
Lemma 3.3. (See [L4, p. 22] for special case where a_ # 0.)

Hypotheses:

1. f(z) = % akzk.
k=0

2. Rij(f, z) is the (i, j) Padé approximant for f.

Conclusions:
If
A§~J—J.+l) - o,
then
Ri,a-1 = Rica, 5 7 Bicg, g 7 Riy
Proof: To compute the Padd approximant Ri 1, j-1 we let
Z1009- -1, j-
Riy, go1 = Mo, 3o1/Dic1, o1
where
i-1 K
D, . o(z) = = z
i-1, §-1 k=odk
j'l k
N, . b4 = X Z
1“1’3'1( ) Koo K

The denominator and numerator polynomials thus defined satisfy the condition
II for the (i - 1, j - 1) Padé approximant, that is
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D - N = (2P (3.10)

Form the product

k
z)D, . . .(z) = £ c.z
i-1, j-1- k=0 k
where
c = ~ s&a.d .
k atv=k LV

In order for ) to satisfy condition II for the

(M, 517 Dic1, 31

(i =1, j - 1) Padé approximant, we need

0, 1, vevy, § - 1) (3.11)

noo= o (x

and

e, = O (k

X Jy 4L, eee, AL 2).

The last equations, written in matrix form, are

e =y p == g =
Soi41 Fgeire % %41 ©
I E T I . S R %42 ©
= . (3.19)
a -1 &j . a aj+i=2 .
J i
a, 0

Eq. (3.12) states that the i-vector (4 d . e, do) must be

i-17 %i-2’

orthogonal to the row vectors of the [al-matrix. Since there are only
ji-1 row vectors in [a], they can span at most an i-1 dimensional
gubspace of Rl. Therefore (3.12) always has a nontrivial solution. Choosing

any such solution, we now determine the n_ by (3.11). Then

1

\ 7

I
i




(N satisfy conditions I and II, and we have correctly

i-1, 3-17 D41, go1)

computed Ri since it is unique.

.1.} J"l

) ' j-1+1
Suppose now that ﬁgd ) - O.  Then the row vector

/
&,

3 Byt aj+i»l) is in the row space of the [a] matrix in (3.12)

and is, therefore, orthogonal to the vector <di»l’ dingj caoy do) chosen to
satisfy (3.12). But this implies
Cipiy = O (3.13)
and as a result we can improve (3.10) to read
- 1+J
£051, gor " M, g = (2000 (3.28)

This increase in the order of approximation means that we may set

(M p, g Pia, ) = Wiy, o Dyog) goap)s end
N1, 31
Bi1, 3 D = Ry, s (3.15)

i-1, j-1

For the polynomials of the pair (Niml,j’ Di—l,j) clearly have
degrees no greater than J and 1i-1l, respectively, and thus property I.
Further, by (3.14), they satisfy property II of the (i - 1, 3) Padé

approximant for f. imila =
PP By a similar argument, we have Ri,j—l Rinl,j-l°

Again, we may set Nij = ZNi~l, -1 and Dij = ZDinl, j-1° The
pair <Nij’ Dij) satisfies both properties I and II of the (i, J)
Padd approximent for f: Property I because deg Nij-f Jj, deg Dij < ij
and property II since from (3.1k)
£D, . - N,. = z[fD - N ] = (T,
i3 7 Mg T i-1, -1 7 Mi-l, j-1

This proves the lemma.
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Lemme, 3.4.  (Frobenius) [3, pp. 1-3]
Hypotheses:

oo

i k
1. f(zg) = Z ez, a #£ O
oo K 0

2. (i, J) is an ordered pair of nonnegative integers, and

Rij(f’ z) is the (i, j) Padd approximent for f.

Conclusions:
1. The determinants Tij’ Uij defined in (3.4) are relatively

prime (i) 4if, and (ii) only if

Ay,

(=i+1) -
2. If & # 0, then Rij = Tij/Uij.

Proof:

1(ii). Suppose A§j—i+l) = 0. Then by (3.7) and (3.8)

Tij(o) = 0 and Uij(O) = 0,

Therefore, unless Tij and Uij are identically zero, they have a
common factor z. If Tij’ Uij are zero polynomlals, they are not

relatively prime, by definition [9, p. T2].
1(i) and 2. Suppose A§J"l+l) = (- 1)'c # o. (3.16)

Then the i columns of

Bieiel Fgeive Py |
(3-1+1) Fieire Fgeir3 0 %y
=N (3.17)
aj &j+l s oo &j'i‘i“l.g

are linearly independent.
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Define

&5-k+l
&5-k+2
k : \
A = . (k =0, 1, ous, 1) (3.18)
| %3kt |
Then S§3_1+l) can be represented as the row vector
j=di+1 i-1 1
s Ll At LAY (3.19)

Each Ak isan i X1 columm vector. Since the 1 columns

AY, Al'l, cees At of S§3—1+l) are linearly independent, they must span
the space R*. Therefore AO is in the column space of Snglal), and
m =0 1is the largest index such that the column vectors
Am, Am*l, seey A1 are linearly dependent.
Now consider the polynomials
1
P(z) = 'c':Tij(Z)
(3.20)
1
Q(Z) = EUij(Z)'
From (3.7) and (3.5) respectively, we have
(1)  B0) = s, Q0) =1
(3.21)
(i11) deg P < J, deg Q < i.
To verify that
(113) fq - P = (279 (3.22)
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we proceed as follows. The value of Tﬁj(z) is unchanged 1f we add to
the first row a linear combination of the other rows. In particular,

Jtk

we add 2 times the (k + 1)th row, k =1, 2, ..., i. Then the

first term of the first row becomes

R .
i Jtk-1 _ i
PR TR fper T Py (3.23)

The other terms of the first row are changed similarly, increasing by

i the index of each A n=yJ-13, §-1i+1, «ou, j). Now

s ey

i i-1 0
7 Aj Z Aj+l oo Z Aj+i
#y-141  %j-ite I ES
Tij(z) = det . (3.24)
&gJ aj+l oo a3+1 )
Therefore we can write
Ao -y 2Ma, -aL) ... o |
J+i J J+i g+l
Fy-i4l Fy-iv2 S FS
Aj+iUij - Tij = det « (3.25)
85 B541 ' Sy |
. . i+j+l . . o .
By inspection, 2 divides every polynomial appearing in the

first row of the determinant in (3.25). Therefore z1+J+l divides the

determinant, and consequently
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) _ i+3+1 L
Aj+iUij Tij = (z ). (3.20)
But now
z k
fQ-P = [A,,Q-Pl+ = azq
J k=j+i+l
(3.27)

(A9
since the proportionality factor ¢ in (3.20) is merely a nonzero constant.

As we have shown in the preceeding steps, the pair (P, Q) defined
in (3.20) satisfies all the conditions of Theorem 2.5, with m = 0. By

result (v) of that theorem, we have
Ris(f, 2) = B(2)/alz) = 1 ,(2)/U;4(2) (3.26)

as was to be shown (Conclusion 2).

Also, by result (v) of Theorem 2.5, P and Q are relatively

prime polynomials, and therefore Tij and Uij are relatively prime.

This completes the proof of the lemma.
Remark: The hypothesis ao % 0 msy be removed if one restricts J to
values not less than the order of f and proceeds as in the generalization

of Theorem 2.2. (See Section 2.7.) Smaller nonnegative values of < o(f)

give rise to the trivial case. Rij(f’z) = 0.
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Theorem 3.5. [21, p. 93]1[17, p. 395]
Hypotheses:

1. f(z) = Xaz, 5,0#0.

2. (i, 3j) is an ordered pair of nonnegative integers, and

Rij(f, z) is the (i, j) Padé approximant for f.

3. (Pij, Qij) is the (i, j) Padé pair of polynomials for f,

postulated in Theorem 2.4, with

degPij = P, d%g%d = (e

., r is the unigue nonnegative integer such that the power series

Zp+q+r+l

[fQ.. - Pij] starts exactly with the power » (See Theorem 2.7.)

Conclusion:

The following five conditions are necessary and sufficient for

ij(f’ Z) = Ruv(f, z), with (u, v) ranging over the (r + l)2

values defined by (a<u<qg+r, p<v<p+ r):
. -g+l
(1) A2 4 o
(i1) I
(1i1) Aéﬁi‘” £ 0 (3.29)
‘ —g+l
(1v) A<(1-151§1> £ 0
(v) Aflfljﬁ*l) - 0 (k=1, 2 .., 1).

Note: If 1 = O, the condition (v) is not present. By Theorem 2.7, r =20

implies (g, p) = (i, j) and, with this substitution, conditions (i)
through (iv) are necessary and sufficient for Rij(f’ z) to be normal.

[11, p. S. 3%1{13, p. La7].
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Proof: By Theorem 2.7, the following five conditions are necessary

uv

and sufficient for Rij—-—R (a<u<g+r, p<v<p+r):

(1%)
(117)
(4id?)
(iv')

(v?)

R
q-1,p-1

R
g-1, p

#
#

R, # R (3.30)
#

q p-1

Rq+r+l, prrt+l

qu = Rq—l—k,pi-k (k =1, 2, vu., T).

It is convenient to include the condition (i') although, by Theorem

2.7, we have (i') €= (ii') and (iii?').

From Lemma 3.3,

we obtain (by contraposition):

(17) emip (1) [let (i, 3) = (¢, p) 1in (3.9)].

(ii') == (ii) [let (i, 3) = (¢, P+ 1) in (3.9)].

(1ii') == (iii) [let (i, §) = (¢ + 1, p) in (3.9)]. |
(iv') and (v') ammip (iv) [let (i, j) =(g+r+ 1, p+r+1) in (3.9)}.%

It remains to show (v') sesp (v). By Theorem 2.4, in order for (Pij’ Q. 1)

to satisfy condition

(k =1, 2, «eu, 1),

As in Theorem 2

P, (2)

1J
IT of the (g + k, p + k) Pade' approximant

we need

k _ ptq  +2k+1
z (£ - Pyl (z ) (3.31)
Ay let
b
s
= I nz, Ny, = ay;
v=0
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a v

Q. .(z) = = dz, a. = 1;
+d v=0 v 0
\ _ v
and f(z,Qij(z) = Zcz,
v=0
where c = % a d..
v O B=v P
Then the condition (3.31) can be written
nv = Cv (V=O; l: ev oy p)
and
cv=O (v=p+ 1, p+2, «oe;, P+ q+ k) (3.32)
(k=1, 2, «ov, 1)

Equations (3.32), written in matrix form, are

— - —
ap-q+l ap_q+2 . a‘p+l dq 0
“p-gr2  Ppeg#3 Spr2 441 ©
=1 ]y =1 (3.33)
8, g, « o e a, d 0
otk k+1 k+ 0
| Pt ot Q; N R -

(k =1, 2, «ou, T).

Choose any k from {1, 2, ..., r}. Equation (3.33) can be satisfied
only if the q + 1 columns of the [a]-matrix are linearly dependent.
Therefore Aéf£q+l) =0, k=1, 2, ..., r, and thus (v) is necessary
for (v').
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We now prove that (3.29) is sufficient for (3.30). From (i) we
conclude (Lemma 3.2, proof of conclusion 2) that there exists a pair of

relatively prime polynomials (P, Q) such that

Rp = P/Q, (3.34)
deg P < p, dgQ <aqa PO) = a; 0 = 1; (3.35)
£ - P = (27, (3.36)

The polynomials (P, Q) are uniquely determined by the conditions

(3.34) and (3.35), and the same conditions imply that the coefficients

q
of Q=1+ =% dézq satisfy the matrix equation (3.33), with k = O.
v=0 ~

From (ii) and (iii) it follows that P and Q are exactly of

degree p and g, respectively. For Q, this result is immediate

from (3,33), gince k = 0, Aé?_q+2) % 0 gives dé % 0. Suppose that

p v
P(z) = a,+ % n¥z .
: (¢} v
v=0
Then (3.36) gives
n¥ = % aagé (v=0,1 «.c, D).
OH-B=Vv
In particular, n¥ = |a a, ces B ~&ﬁ1 ax = 1. 3.3
p r J p [ p_q} p-q+l P] q J O ( 7)
X
dq—l
g%
L 0




But (iii) implies that S(pGQ) is a nonsingular matrix:

g+l
8, 8, oo 8
p-q p-agtl P
(p-q)

S - = 8 coe a,

i+l p-g+l  “p-gi2 ptl (3.38)
a 8, cee a,
P prl pta

B "
Therefore, the rows of S(P—q) span the gspace Rq+l. The vector

g+l

(dq’ dq—l’ cos do) is a nonzero vector in Rq}l, orthogonal to all

rows of SéEEQ) except the first row (by equation (3.33), with k = 0).

Therefore the scalar product in (3.37) cannot vanish, and (iii) = n, #£ 0.

Now qu = P/Q, (P, Q) relatively prime and deg P =p, deg Q = g,

implies

it R R

(£ qap 7 g-1,p-1

ii') R R

(11 ) ap ;é q-1,p

iii? R R .

(1111) qp 7 9 p-1

' _ (k) (k)

To prove (v'), let Rq%k,p+k = N\ /DVYY,  where

ptk g+k
T o) = Tpal®)gy,

V:O V:O

Since fD(k) - N<k) = (Zp+q+2k+l), we have
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— k)
0 (
0 0 2y dq+k
k)
0 (
0 ) e dqtk-1
ptk+1
TOwWs .
g a, a, k
¢ P-q p-q+l ptk-1 Ptk dé )
I
(x) _ k _
where do = 1, Ny = ay-
Also
=Wa a, o a, d(k) _1
p-qt+l P-qt2 pHkt+1 gtk
(k)
Bpeqre  Zp-gt3 Tt Cpikie dgtk-1
q+ k -
rOws
(k)
l Btk Skl T a‘p+q+2k 4o

- (p-a+l) _
Since Aq}l = 0,

solution of (3.40) for k =1 is

dél) = 0, di;) = d 4 (

Substituting in (3.39), one obtains

R -

Hence N(l)/D(l) = P/Q

and (v') holds for k = 1. Then, since Aéf;qm

for k =2, (3.40) has the nontrivial solution

dé2> = 0, dfre) = dff}])_
while (3.39) gives
2
né ) = 0, nég) =. ns?%
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v

vV =

1)

(v

comparison with (3.33) shows

I
—
>
N
]

‘n(k) -
0
(k)
1
= (3.39)
ek
)
T ]
o |
0
: (3.40)
0

that a nontrivial

eee, g+ 1), (3.42)

., P+ 1). (3.42)

= 0, it follows that

]

L 2

vey, q + 2)

ce, P F2)




2 2)
Consequently, N( >/D< = N(l)/l)(l> = P/Q. On continuing this

argument, we conclude that (v') holds.

Finally, (iv') holds. For if not, we would have
1
2 Hpq - ] = (PTATETHS)
which is impossible by virtue of (iv).
This completes the proof of Theorem 3.5.

3.4 Determinantal Form of Padé Approximant.

Lemma 3.6.
Hypotheses:
1. {;k} 1s an infinite sequence of real numbers, a; £0, o >0,

ak =0 for k <o.

2. (4, j) 1is an ordered pair of nonnegative integers.

3. The i-dimensional column vectors Ak(k =0, 1, 2, oeey 1)

are defined by

= =
#3-1er1
k
An = ey v . (3.43)
8. .
n J-k+i M
S = s§3“1+1) is the Hankel matrix defined by (3.17).

L. m is the largest index such that the column vectors

A, A7 T, ..., A are linearly dependent.

o
O
i




Conclusions:

(j=i+1) : B :
Ai-m £ 0 if m=0 or m=i.

A(J—1+l)

. m < i.
1-mt+1 *

= 0 if 1

LAY

Proof:

(i) Suppose m = O.

i ,i-l

Then the columns of S = [A™, A 3 ey Al] are linearly

independent and

det § = Aé3‘1+l) £ o.

(ii) Suppose m = i.
i . .
Then A" = 0 and, in particular, aj=i+l = 0

Therefore

A3-1+41)

1 = Gy < O

Also, trivially by definition (3.2),

(3.hh)

(3.45)

Aéj-i+l) 1 4 o.

(iii) Suppose 1 <m < i.

Alg-i+1)
1emtl

of the matrix M = [Al, Al“l, cees A™. But the columns of

linearly dependent, so

(j-i+l)
Bilma ~ = O

This completes the proof of the lemms.

.,7() -

is the minor consisting of the first 1 - m-+ 1 rows

M are




Theorem 3.7.
Hypotheses:
- -k /
1. f(z) = kr;oa,kz,, a, #£ O.
2. (i, j) 4is an ordered pair of nonnegative integers.

3. d 1s the smallest nonnegative integer such that

(j=i+1

a5y, (3.16)
Conclusions:

l. 0<d<i.

2. The polynomials Timd,j»d and Ui-d,j—d’ defined by equation

(3.4), have at most J and i zeros, respectively, (counting multi-

plicities). They have no zeros in common.

3. The (i, j) Pade sapproximent for £ is

T. . (=)
i=d, j-d
Rla(f’ Z) - Ui_d)jmd A N (3’1}7)

L. R = R (u=1, i -2, «ceo, 1 =d; v=3, d=~21 oo, §=4).

uv id

Proof: Conclusion 1 is obvious from the definition Aén) =1, n> 0,

Suppose d = O. By Lemma 3.L, Agaﬁl+l) # 0 implies that Tijj Uij

are relatively prime polynomials and

R .(f, z) = E«iﬁi'(z)- (3.49)
ij? B Uij z) ° ’

From (3.5), deg Tij < J, deg Uij < i.




Suppose d > O.

Then @E“”l)=o (k =1, i -1, oo, & =4+ 1).

By repeatedly applying Lemma 3.1, we obtain (3.47), since

Ri5 = Biog, 3-a (3.50)

Ti.4, 3-d
fr——ig—— , by Lemms 3.2.
i-d’ j_d

Conclusion 2 follows directly from A§9&l+l) # 0, by Lemma 3.k.

In particular, if d = i, then by (3.6)

Ty <g
= ﬁ_d-— = A, .. (3.51)
0, j=-1

Conclusion 4 is a trivial consequence of (3.50), by Lemma 3.6.

Remarks: The method displayed in Theorem 3.7 depends on finding
first the parameter 4 which, in turn, depends on the distinction
between singular and nonsingular matrices. In practice, round-off errors
will obscure the distinction. It is, therefore, of some interest to note
the effect of an erroneously large choice of d. This will happen if a
nearly singular Hankel matrix is considered to be "singular" (by the
criteria used in a given computer algorithm). As a result, the computed
(i, j) Pade approximant in (3.47) will be cleared of numerator and
denominator factors which are not strictly cancellable.

The theorem is a refinement of Lemma 3.4. (Frobenius [3, pp. 1-3].)




Corollary 3.8 [30, p. 159]

Hypotheses:
1. Z(s) = = aks—k"l, 2 £ 0.
k=0

©. The Padé table for f(z) = = akzk is normal.
k=0

3. (i, j) is an ordered pair of nonnegative integers.

Conclusion:

(3.52)

Let the partial sums Z_. of the infinite series Z be denoted by

N
ZN = Nglaks—k'l, >0
k=0
ZO = 0
and let AZN = ZN+1‘" Zy = aNS—N-l

Then the (i, j) element in the E-array for Z is

(3.53)

(3.54)

2, %y Coe 2y
AZ AZ. C .. Az
det J 3+l g+
A7 A7,
Jrl j+2 s v e AZJ+i+l
Bz, 6) = i Mg 0t el
* F 1 1 . il 7
o, 22 Lo g
det . .
T e S Tt |

Proof:

As in Chapter II, equation (2.60), we can write

- 13 .

(3.55)




23 (4)

(J) i ,
E;Y(Z, 8) = - (3.56)
* anj(s)

where QéJ) is a monic polynomial of degree i, and Pga) is a

meromorphic function of s. [Equation (2.62)]. By Corollary 2.8, we

have, as in equation (2.6k4)

-i+1_(3) B B
s P; (s) = i,i+jnl(z)’ sz = 1

and (3.57)
SngJ)(S) = Q’i,i‘*‘j“l(Z)’ sz = 1

where (P,

. C s / .
1,i+j-1’Qi,i+j=l) is the (i, i+j-1) Padé pair for f.

Using the result of Theorem 3.7,

(3)
() s (=) i, gri-2(?)
Bz, 5 = g = R (3.58)
' Q; 7 (s) 2Q; 513-1(%)

The Pade table for f is normal, so A(J> # 0 and

i
(3) Ty, gri-1(?)
B:°°(3, 8) = . (3.59)
s, r1-10%)

Now, the respective definitions of A, in (3.3) and Zy in (3.53),
with sz = 1, imply
N-1 N-1
k -k-1 6
= = = ) e O
AN_l(z) k§oakz s ioaks sZN(s) (3.60)
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By definition (3.4),

Ty, 341-2(2)

Similarly,

Uy, g1-1(2) =

where 8z = 1.

det

det

det

det

Fyri-1

i1

sj+;AZ.
J

sJ+%AZ

&, .
J+1

i-1

8541

J+i

=i+l
8

jte
s g+l

JHi+l
S AZj+i

-~ 75 -

3

'Y

Jri

Bipoial

SJ+1+l

sJ+2%ﬁZ

J+i

J+2i-1

(3.62)




Finally, substitution of (3.61) and (3.62) into (3.59) gives the

desired result, and the corollary is proved.

Remark: Comparing Theorem 3.7 and Corollary 3.8, we note that the
latter assumes normality of.the Padé table as an added restriction on f.
If this condition is not fulfilled, certain formal difficulties exist in

the derivation of results paralleling those of Theorem 3.7. A theory of

E-arrays for the general case is not yet available.

The rational expressions Rij(f, z) or EgJ)(Z, s) which may be
obtained from the set of coefficients 85 k=0, 1, «¢e., 2r -~ 1, are
those entries in the Padé table lying upon and in the triangle whose

vertices coincide with the approximants

. 4 (3.63)

R2r=l,0

and those entries in the E-array which lie in and upon the triangle whose

vertices coincide with the functions

(0)
By A
.

@ \'«

: " (0)

) ///EJ:‘ (3.6&)
(o)~ B

2r
EO




As pointed out by Wynn [30, p. 171], numerical experience supports
the claim that, in general, for prescribed values of the arguments =z

and s, the expressions in the sets (3.63) and (3.64) for which

Ry (5, =) - 7(=)| or |5 (s) - 2(s)]

are a minimum, sre given by i+ 1= j=1v, or i=j+ j=r1r, or
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IVv. MINIMAL REALIZATTIONS OF LINEAR DYNAMICAL SYSTEMS.

One of the problems in the theory of linear dynamical systems is to
construct models from input-output dats. This is variously known as the
problem of "modeling", '"process identification”, or "constructing a
realization'. While special, distinctive meaning has been given to each
of these terms, the object is generally bto find a mathematical model which

lends itself to computer simulation.

The explicit determination of such a model is the subject of B.L. Ho's
dissertation [6]. 1In particular, Ho considers the problem of constructing
state-variable models of linear, stationary, finite-dimensional, multivariate
dynemical systems. His algorithm is based on the solution of the “algebraic

realization problem", defined as follows:

Given an infinite sequence of real (p X m) matrices,

Y = (YO, Y, Yo, ..), to find real matrices F, G, H such
that
HF G = Y, (k =0, 1, 2, ...) (4.1)
where F = (nXn) matrix
G = (nXm) mtrix
H = (p Xn) matrix.

Following the accepted terminology, any solution (F, G, H) of the
algebraic realization problem is called a realization of ¥, n is the
dimension of the realization, and a solution with the smallest possible

dimension n, is called a minimal realization of Y.
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k.1 B.L. Ho's Existence Theorem.

Ho gave (i) necessary and sufficient conditions for a solution of
the above problem to exist (Proposition 4.l), and (ii) a numerically
simple algorithm for the construction of minimal realizations (Theorem Loh).
He also derived other abstract results of realization theory, some of which

are reviewed and extended in this and the following chapters.

The existence of a reslization is established by the following

proposition which plays a fundamental role in Ho's theory.

Proposition 4.1 [6, p. 11]

The sequence ¥ = (YO, Y, Yo ...) has a realization if and only

if there exists an integer r such that

r
Y . . = oY . . J = 0, 1, «.. (k.2)
4+ fop YT it+]
where Oi’ Qs eees Q} are sultably fixed constants.

Ho gives a beautifully simple proof of this proposition. Before
proceeding with it, we make some definitions and present a lemms which

will be useful throughout this chapter.
Definitions:

1. Given a sequence Y = (YO, Yo ...), and two nonnegative

integers r, k, we define the (pr X mr) matrix

Ty Yerr  c 0 Y

(x) _

Sy - Yk+l Yoo 0 0 Yty (%.3)
Y1<;+r=-1 Yk+r ot Yk+2r~2
-~ aut
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Note: The definition (4.3) is consistenmt with that made in Chapter ITI when

is a scalar sequence. In this case (p =m = 1), we set det S(k) = A(k)
— r

in (3.2).
2. If Y satisfies the linear recursion relation (4.2), let M
be the (pr X pr) block companion matrix
- -
0 I 0 0
b Y P iy
0 0 I 0
S Y p P
M = . . . C e . (4.4)
0 0 0 I
b b 1Y b
A 0T, |
where Op = (p X p) zero matrix
Ip = (p X p) identity matrix.
3. If ¥ satisfies the linear recursion relation (4.2), let N
be the (mr X mr) block companion matrix
0 0 0 o T
m m m T m
I 0 0 o I
m m m r-1"m
N = Om Im s o o Om ar-glm ° (l".s)
Om Om . . e Im QiIm
4. TFor given positive integers u, v (u <v), let E, be the
(u X v) matrix
= . .6
E, = [I,0] (&.6)
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In particular, if r is a positive integer and v = ur, we abbreviate
Eu = Pu,ur (%.7)
Lemma, 4.2.
Hypothesis:
1. ¥ = (YO, ¥, ...) 1is a sequence of matrices satisfying (4.2) for

some positive integer r.

2. i, J are nonnegative integers.

Conclusion:

s§i+j) Misij) - sty (4.8)

r

the matrices S, M, N having been defined in (4.3), (k.4), (4.5),

regpectively.

Proof: Let J be an arbitrary nonnegative integer. We shall prove

the lemma by induction on i. (4.8) is obviously true for i = O.

Suppose (4.8) holds for an arbitrary fixed integer i > 0. Then,

Qs

because the coefficients (Qi’ 5

‘o) ar) of M and N satisfy (4.2),

M 1+ls(3)

Msgi+j)
r

¢(1+3)y
I

r

S(J)Nl+l.
T

S(1+J+l)
r

i+ 1.

Therefore (4.8) holds for
the lemma holds for all 1 > O.
valid for all nonnegative i,

Proof of Proposition 4.1

Assume that a reslization

By mathematical induction,

But J was arbitrary, so the proof is

Je

[6, p. 11]:

(F, G, H) of dimension n exists.
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-1 n-2 i .
- 622 - coe = Bn, SO = 1 be an annihilating

Let ¥(z) = 2" - Blzn
polynomial of F. (The Cayley-Hamilton Theorem guarantees the existence
of V.) Then
. . n -
0 = HPW(F)G = HFG - 3 pHF G
i=1

so that (4.2) holds with r = n and a, = B, i=1, 2, «v., N

Conversely, suppose (4.2) is true. By Lemma 4.2, this implies

Misgo) = sii) (1 =0, 10, 2, ...).

The first block in Sil) is Yi. Therefore

v. = esPpr - ® MlS(O)E',
i pr m P r m
and F = M
(0)rs
¢ = 8.8 (4.9)
H = E
D

is a realization of ¥, by (4.1).

4.2 B.L. Ho's Realization Algorithm

The following lemms preperes the way for Ho's minimal realization

algorithm.

Lemma 4.3.
Hypotheses:
1. ¥ is a sequence of matrices satisfying (4.2) for some positive

integer r.
2. (F, G, H 1is a realization of Y.

Conclusion: rank Sio) < dim F.
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Proof: By hypothesis, Yk = HFKG, all k > O. Therefore S§O>

can be factored as follows:

et

(B FH' ... (PO Y

vV o=
(L.10)
w o= [6 TG U )
where the prime denotes the transpose of a matrix. Then
sio) = VW. (4.11)

Now rank Sio)

< min(rank V, rank W) < dim F.
Theorem 4.4, (Ho's realization algorithm)[6, p. 13]
Hypotheses:'

1. ¥ is a sequence of (p Xm) matrices satisfying (4.2) for

some positive integer r.

2. sik) (k =0, 1, ...) are generalized Hankel matrices for ¥,

as defined in (4.3), with rank Sio) = n.

3. P and Q are nonsingular matrices, of dimensions (pr X pr)

and (mr X mr) respectively, and such that

‘PS(O)Q = E' _ _E (k.12)
r n, prn,mr

i.e., PSiO)Q is the canonical diagonal form

of 8.7, [22, vol. I; p. 141]
0 0
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Conclusion:

Let
F = E Ps(l)QEi (n X n) matrix;
n,pr r n, mr’ ?
G = E PS(O)E‘ (n X m) matrix; (4.13)
n,pr r w’ ? ’
(0) g s -
H = EPSr QEn,mr’ (p X n) matrix.

Then (F, G, H) is a minimal realization of the sequence ¥.

Proof: The existence of suitable matrices P and Q 1is a well-known

fact from linear algebra. [22, pp. 133-141]

Let
B '
s* = QEn,mrEnjprP. (h.1k)
Then hypothesis 3 gives
s(@)ghg(0) _ (0],
r r r
(4.15)

shs(Ogh = gt

From the definitions of F, P and Q,
k
* -on e L k=0, 1) (1.16)
By Lemma 4.2,

- (0) #5(O)yyom ¢
Fo= B PMS USTS UNGEL

(O)yom *
En, prPMSr NQEn,mr

_ (2) g
B En, prPSr QEn,mr'
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Using Lemmsa 4.2 and (4.15) repeatedly, we have the general result

! (k)
Fo= By PSIUQED (k=0, 3,2 ...).  (h17)

Therefore

HFKG = B S(O)QE' E PS(k)QE' B PS(O)E'

pr n,mr n,pr r n,mr n,pr r I
P r r m
= }zpmlﬂszio)mn’1 (4.18)
- 5 g
rr m
= Yk.
(0)

F is an (n X n) matrix, and rank S = n by hypothesis 2. By Lemma

r

4.3, the realization is minimal.

Remark: Theorem 4.4 solves the algebraic realization problem stated
in the introductory paragraphs of this chapter, whenever such a realization
exists. The following proposition, due to Ho [6, p. 48], demonstrates
that the algebraic realization problem is equivalent to the problem of
finding the (minimal) realization of linear, stationary, finite-dimensional
dynamical systems from their input-output descriptions. A remarkable
feature of this proposition is that it spplies equally to discrete-time
and continuous-time systems, and that the input-output data may be presented

either in the time domain or in the transform domain.
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For the discrete-time system

]

x(k + 1) F x(kx) + ¢ u(k)

(4.19)

(k) H x(k)

]

the time-domain description is given by the pulse-response function
Y, = HFG, k = 0, 1, ... . (4.20)

The transform-domain description is given by the z~transform transfer

function
T(z) = H(zI - F)'lG. (4.21)

For the continuous-time system

c—;‘% = Fx(t) + Gu(t)
(k.22)
y(t) = Hx(t)

the time-domain description is given by the impulse-response function
W(t) = Hexp(Ft) G, t>0. (4.23)

The transform domain description is given by the Laplace transform

transfer function

7(s) = H(sI - F) la. (4.2h)
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Proposition 4.5 [6, p. 48]

The following four problems are equivalent to the algebraic realization

problem:

(i) Given the function k -Y,, find a triple (F, G, H) of constant

matrices such that (4.20) holds.

(ii) Given the function z —T(z), find a triple (F, G, H) of

constant matrices such that (4.21) holds.

(iii) Given the function + —W(t), find a triple (F, G, H) of

constant matrices such that (4.23) holds.

(iv) Given the function s — Z(s), find a triple (F, G, H) of

constant matrices such that (4.24) holds.

For a proof and further discussion of this proposition, the reader

is referred to the paper by Ho and Kalman [36, p. 453].

4,3  The Unigue Representation Theorem.

In this section, we present s specialized version of B.L. Ho's minimal
realization algorithm. The specializaiion 1s accompanied by the achievement

of a number of desirgble new properties.

For example, the one-to-one correspondence established in Corollary 4.10
has no parallel in Ho's theory. By showing this one-to-one correspondence
between minimal realizations (F, G, H) and generating matrices (V, W),
we demonstrate that the new algorithm i1s the sharpest possible, subject

to the requirement that every minimal realization may be obtained.
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We note, too, that the generating pair (V, W) in Corollary 4.10
is the same pair of matrices whose rank determines the complete controllability
and observability of stationary linear dynamical systems. [7T; p. 201],
[8; p. 170], [27; pp. 499-506], [29; p. 53]. The beauty and significance

of the reciprocal relations (4.69) and (4.70) is obvious.

The close similarity, as well as the difference, between the compu-
tations for B.L. Ho's algorithm and the new algorithm are brought into sharp
focus in Proposition 4.11. B.L. Ho's algorithm is phrased and proved in
such a manner that the whole matrices P and § appear. The new algorithm

operates only with submatrices of the matrices P and Q, viz., with the

(0)

parts which lie in the column and row spaces of Sr .
Lemma 4.6.
Hypotheses:
1. ¥ is a sequence of (p X m) matrices satisfying (4.2) for

some positive integer r.

2. Rank Sio) = n, where Sio) is the generalized Hankel matrix

defined in (%.3).

3. (F, G, H is a minimsl realization for ¥, and

V! [(H' F'H' ... (95

(4.25)

W = [G‘ FG “ o Fr-lG] o

Conclusions:

(0)

1. The columns of V are a basis for the column space of Sr .

(0)

The rows of W are a basis for the row space of Sr .
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2. The pseudo inverses VT, WJr are given by

voo- (V*v)"lv
(4.26)
W= w'(ww')'l.
) k
3. VEW = sé )} k = 0, 1, 2, coe

Note: See Appendix B for definition and properties of pseudo inverse.

Proof:
1. Since (F, G, H) is a minimal realization, we have

dim F = n. But

4(0)
r
and so we have

n = rank Sio) < min(rank V, rank W) < mex(rank V, rank W) < dim F.

Therefore, dim F = n implies the well-known result [8, pp. 169, 170]
rank V = rank W = n.

Since V has exactly n columns and W has exactly n rows,
Conclusion 1 follows immediately. Also, the system represented by (F, G, H)
is completely controllable (since rank W = n) and completely observable

(since rank V = n). [6; p. 50].

2. To show Conclusion 2, write V =VI ~and W=1IW. Then (k.26)

is readily verified by the construction given in Appendix B, Section 2.

3. Since (F, G, H) is a realization, we have
Y, = HF'G, 120, 1,2 ...
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Therefore, the product Vka is a block matrix whose matrix elements

(k)

are precisely the elements of Sr .

This completes the proof of the lemma.

Lemma, 4.7.
Hypotheses:
1. ¥ is a sequence of (p Xm) matrices satisfying (4.2) for

some positive integer r.

2. Sik) (k =0, 1, 2, ...) are generalized Hankel matrices for
Y, as defined in (4.3), with rank Sgo) = n.

3. B and C are matrices with the following properties:

(i) B is a (pr X n) matrix whose n columns are a basis for

(0)

the column space of Sr H

(ii) ¢ is a (n X mr) matrix whose n rows are a basis for the

(0)

row space of Sr 5

(iii) BC = Sgo) = 8, say.

Conclusion:

For each pair of nonnegative integers (i, j),
. . _ PR
shcs et = (B ¢ - (BT M)
the matrices M and N having been defined in (%.4) and (4.5), respectively.

Proof:

By Lemma 4.2,

s W = s Y, anda MS = sN.
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Therefore, taking kX = i + J, 1t suffices to show that

+ + +
B s Ne = (B8 ch)k, (k =0, 1, «v.).

By Hypothesis 3, we deduce (see Appendix B.lk(ix))

ST = CTBf.

Certainly, (4.27) is true for k = 1.

(h.27)

(4.28)

Suppose (4.7) is true for k equal to some fixed positive integer q.

Then

.'_

(5's meHT - (2's nd')(E's v

]

pmss's wl%’, by (4.28)

+ +
B e, by Lemms 4.2.

Therefore, (4%.27) is true for k=1, 2, 3, ..., by induction.

For k = 0, we have
L .1_ - -
Bse = [(B'B)'B'IBclc'(cct)™h) = 1.

This completes the proof of the lemma.

Lemma 4.8 [6; p. 17]

Hypotheses:

_1..
B M, by definition of s (see Appendix B.1)

(k.29)

¥ is a sequence of (p X m) matrices satisfying (4.2) for some

positive integer r.
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1. Any two minimal realizations (Fk, Gy Hk), k=1, 2, of

the same sequence ¥ are isomorphic: There exists a nonsingular matrix

T such that
-1
F2 = T FlT
G2 = TGl
-1
H2 = HlT .

2. The matrix T in (4.30) is given explicitly by

+ +
T = V2V1 = wgwl
where
V! o= [Hﬁ F'H' ... (Fﬁ)r lHI;],
r-1
Wk = [Gk Fka . Fk Gk], k=1, 2
Proof:
By Lemma 4.6,
(0) _ -
Sr = Vl'wl = V2W2,
and
(1 _ _
Sr = VlFin = V2F2W2.
Define
+ 1
T = Wewl’ U = VlV2
Agsertion:
UT = TU = Ic

(4.30)

(k.31)

(k.32)

(4.33)

(b.34)

(4.35)

(4.36)




Proof of assertion (4.36):

By Lemma 4.6, the columns of V, are a basis for the column space

k

for k=1, 2.

By the same lemma,

VL = (VﬁVk)_lVE
w; = WQ(WKWQ)'l.
Therefore,
vy, = 1 and W WJr = I
k'k k'k
Now
UT = Vivgwgw; = v;viwlw;, by (4.33),
= I, by (%.37).
Again,
U = wgw;vzvg = wg(sio))fvg, by (4.28).
Using assertion (4.33), we obtain
U o= WHWVV. = I, by (4.37).
2'2'2"2

The assertion (4.36) is proved.

Now (4.36) shows that T and U are nonsingular and that

U= 7t Also, from (4.33), (4.35) and (4.37),
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and the rows of W, are a basis for the row space of 3;

(4.37)




VT o= VI = VW = ¥

2 221 111 1
(4.38)
Wi, = VW, = VVW, = W
2 1’22 111 7 1’
Substitution for V, and W, from (4.38) into (L4.34) gives
VlFlwl = VETF:LUY/\T2 = V2F2W2
which, in turn, yields
F = TFU = TFT - (4.39)
2 1 1 :
where
+ -1
T = WHW, = U7, by (4.36).
=1 T -1 T . . s
But U = = (V1V2) = V,V;, by Appendix B.4, properties (ii), (iii),
and (ix). Therefore
T +
T = V.V, = WW. (4.%0)
. — 1 ) o .
From (4.32), G, = WkEn’mr, k=1, 2 (4.41)
and
H = En,prvk’ k=1, 2. (4.42)
Substitution of W, = U | = W, from (4.38) into (4.41) gives
— 1 —_
G, = THE] o= D6 (4.43)
Similarly, substitution of V, = VlT-l from (4.38) into (4.42) gives
-1 -1
H, = En,perT = T (4.44)

In view of (4.39), (4.40), (4.43) and (L4.44), the lemma is true.
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Theorem 4.9 (Unique Representation Theorem)
Hypotheses:
l. ¥ is a sequence of (p X m) matrices satisfying (4.2) for

gome positive integer r.

k
2. Si ) (k =0, 1, 2, ...) are generalized Hankel matrices for

Y, as defined in (4.3), with rank Sio) = n.
3. (B, C) is an ordered pair of matrices with the following properties:

(i) B is a pr X n matrix whose n columns are a basis for the

(0)

column gpace of Sr H

(i1) ¢ is a (n Xmr) matrix whose n rows are a basis for the

(0)

row space of Sr H

(iii) BC = sio) =g, say.

Conclusions:

Let
F = stil)ct (n X n) matrix;
G = BTS£O)EA (n X m) matrix; (h.b5)
H = EPS:E‘O)CJr (p X n) matrix.

Then

1. (F, G, H) is a minimal realization of the sequence Y.

2. Given any minimal realization (F, G, H)' for Y, there exists
an ordered pair of matrices (B, C) having the properties of Hypothesis 3
and generating (F, G, H) when substituted on the right-hand side of

equations (L4.45).
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3. The pair (B, C) of Conclusion 2 is unigue for each minimal

realization (F, G, H), and is given explicitly by
(B, ¢) = (v, W) (k.L6)

where V and W are defined by (4.19).

Proof:

l. Let S = Sgo) and ST = pseudo inverse of S.

Then, &s shown in Appendix B,

er = CTBT (4.47)

and

5SS = B.

Now HF'G = (ES ) )(B s(l)cf)( (O)E)

(EPSCT ) ( B snot )k(l:';r SEn'l)

Il

(EPSCJF)(BTSNkCT)(BTSEn'l), by Lemuma 4.5

EPSST ats’ SE!, by (4.47) (4.49)

EpMkSEn’l, by (4.48)

i

= EpSik)En’l, by Lemma 4.2

= Yk'

This shows that (F, G, H) is a realization for 9.

(0)

F is an (n X n) matrix and rank 8, ' =mn, by Hypothesis 2.
Therefore the reaslization is minimal, by Lemma 4.3. This completes the

proof of Conclusion 1.
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2. Suppose that (F, G, H) is an arbitrary fixed minimal realization
for Y. Then Lemma 4.6 implies that the matrices (V, W) defined by (L.25)
have the properties of (B, C) postulated in Hypothesis 3 of our theorem.

Therefore, substitution of

o v - (v“v)'lv
(4.50)
¢ =W = w'(ww')~l

on the right-hand side of (4.45) will give a minimal realization of ¥.

Let this minimal realization be (Fl, Gy 5 Hl):

F, = V'Ts(l)wT
r
_ 1a(0)
G, = VS B! (%.51)
H, = E S(O)Wi.
1 pr
r- r-1
Let vi = [HiFiHi cee (Fi) lHi], W, = [Gl FiGy w00 Fy Gl]. (4.52)
By Lemma 4.8,
(F, G, H) = (TFlU, TG 5 HlU) (4.52)
where
T = VTVl = U'l, U = wle = 7t (L.54)
By Lemma 4.6,
(0) _ -
s, = VW, = W, (4.55)
and
(1) _ -
S, = V,FW, = VIW. (4.56)




Now from (4.53) and (4.54):

+ t
F = TFU (v Vl)Fl(WlW )

VTsil)er, by (4.56).
Using the first of the equations (4.51), we obtain
F = F,. (.57)
Again, from (4.53) and (4.54),
G = TG, = (VTVl)(VTsio)Em'). _ (4.58)

But now (using § = Sio)):

V.V S = HF VTS, by (4.52)

t_t t
= EPSWJFV MSW V' 8, by (4.51)

I
EPSWJF[V usw 15

ey

E SWT V1L S
P

AP S N
= Epsw (VMSW )V S, [oy Lemma 4.7

: Sl ot
Epsw’L(VJrMr Tow V'S - 98 .
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- —
p
= EPM S, by (4.28) and Lemma 4.7
Eer'l
e e
=z T = S
pr

Now, from (4.51), (4.58) and (%.59),

R (o) M
G Vs, B Gy -

Similarly, from (4.53) and (4.54),

-1 0). t t
H = HT = (Epsi )W‘)(wlw ).

By proceeding as in the proof of (4.59), one can show

sio)wfw = sio).

1

Therefore

H = E S(O)WT = H,.
Pr 1

(%.59)

(4.60)

(4.61)

(4.62)

(4.63)

We have shown that the pair (B, C) = (V, W) generates the minimal

realization (F, G, H).

3. Suppose that there exists some other pair (Bl’ Cl) having the

properties of Hypothegis 3 and giving
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Ts(l)c t

F o= By 5,70
t(0)s L. 6k
G = B, S, By ( )
(0). T
H o= ES.'Cp -

By Lemma 4.8, we must have

T = VTBl = I. (4.65)
.t.
U = CcWw = I (4.66)

. . t .
By Appendix B.4(iv), VV  is the (unique) orthogonal projector for the

(0)
" The columns of Bl

S§O>. Therefore (4.65) implies

column space of S are in the column space of

.t.
V = VW B = B. (4.67)
- to, : (0)
Similarly, W W is the orthogonal projector for the row space of Sr 5
and (4.66) implies therefore
W=CWTW=C. (4.68)
1 1 :

The theorem is proved.

Corollary 4.10.

Hypothesis:

Y is a sequence of matrices having a realization of dimension r.

Conclusion:

There is a one-to-one correspondence between the minimal realizations
(F, G, H for ¥, and the matrix pairs (V, W) = (B, C) satisfying the

conditions stated in the hypotheses of Theorem 4.9.

The correspondence is established by the following transformations:
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t,(0)
G = VS E (4.69)
g o= gslO%y
Dr
v o= [H' FW' ... (pn)T g
(k.70)
W o= [G el e Tl

(The one-to-oneness is assured by the uniqueness of the pseudo inverse

of a matrix. See Appendix B, Section 3.)

Proposition 4.11.

Hypotheses:
1. ¥ is a sequence of p X m matrices and satisfies (4.2) for

gome positive integer r.

2. Sik) (k=0, 1, 2, ...) are generalized Hankel matrices for

Y, as defined in (4.3).

3. rank Sio) = N.

X = column space of Sio); i.e. an n-dimensional subspace
of R,
(o) . . mr
8 = row space of Sr ; 1.e. an n-dimensional subspace of R .
X+ = orthogonal complement of K.
R'L = orthogonal complement of .
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Conclusions:

1. Suppose (P, Q) are a pair of matrices satisfying the hypotheses
of Theorem 4.4, and give a minimal realization (F, G, H) for ¥, through

substitution in the algorithm (4.13). Then the pair (B, C),

B = (E P)T (4.71)

n, pr

(@]
1

(a8, ") (4.72)

substituted in the algorithm (4.45) of Theorem 4.9, will produce the
same realization (¥, G, H).
2. Suppose (B, C) are a pair of matrices satisfying the hypotheses

of Theorem 4.9, and give a minimal realization (F, G, H) for ¥,

through substitution in the algorithm (4.45). Then the pair (P, Q),
-
P =101 q-=[ccC] (L.73)

substituted in Ho's algorithm (4.13), will produce the same realization
(F, G, H).

The submatrices B~ and C may be chosen arbitrarily, subject
only to the restriction that the rows of B must be a basis for M'L

and the columns of C must be a basis for @l:

Proof:

1. By Ho's algorithm, Theorem 4.4, equations (4.13):

_ (1)
Fo= En,prPSr Q‘Ertl,mr
(4. 74)
= 3E’>.]LS(:L)CJr
T
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. + bt
since B = [(En,pr )l = En,prP’ by (4.71), and
T — 1
C = @By BV (k.72).
Likewise, G = E PS(O)E‘ Therefore, by (4.71)
g n,pr "r “m ? thEs
I Y (o) Ny
G = BS,El (&.75)
Also H = E S(O)QE’ Therefore, by (4.72)
s P r n,mr’ 5 . s
H = E S(O)CT. (4.76)

pr

Equations (4.74), (4.75), (4.76) are the same as equations (L4.45) of

Theorem 4.9, thus proving claim 1.
_‘.
2. By Appendix B, Section 4(vii), the n rows of B span K.

- oA
By hypothesis, the (pr - n) rows of B span X .
EJ
[ ] is a nonsingular (pr X pr) matrix.

B

il

Therefore, P

+ .
Similarly, Q = [C C ] is a nonsingular (mr X mr) matrix.

]

Furthermore, by hypothesis, the rows of B~ are orthogonal to the

columns of SiO), and the columns of C  are orthogonal to the rows of
Sgo). Therefore
Busio) = 0 and SiO)C“ = 0. (4.77)
+ T - -
Also, B sﬁo)c = [(B'B) lB‘](Bc)[c'(cc') e I (4.78)
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Now PSE_O)Q = S(O) [CJr ¢

- =
BTS(O)CT stio)c-

B_S(O)CT B'S(O>c'
L r r B

Substituting from (%.77) and (4.78), we see that

PSiO)Q = . (%.79)

Thus, the pair (P, Q) satisfies the hypotheses of Theorem L.k. 1In Ho's

algorithm (4.13), P and Q occur always in combination with the factors

H
En,pr and En,mr' By (k.73),
N
E P = E - B
n, pr n, pr _
B (4.80)
T - T
H — 1 —
QEn’mr = [C ¢ ]En’mr = C .

On substituting the factors (4.80) into Ho's algorithm (4.13), the
identity of the resulting equations with those of (4.45) is immediately

evident.

The proof is complete.
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V. HANKEL DETERMINANTS OF REALIZABLE SCALAR SEQUENCES.

Using the tools of the preceding chapters, certain theoretical
properties of realizable sequences and of their realizations can be
easily proved. The work reported in this chapter was to provide a
theoretical basis for linking the properties of realizations of a given
sequence, with the properties of Padé approximants of the formal power

series generated by the same sequence.

Theorem 5.4 and its corollaries show some interesting properties
of symmetric matrices. Theorem 5.8 gives four different mathematical
equivalents of the statement that a scalar sequence has a minimal
reslization of a given dimension. The theorems mentioned above are
generalizations or sharper forms of theorems found in the referenced
literature. In view of the great wealth of literature which is concerned
with the same or related problems, it 1s unlikely that the results presented
in this chapter are genuinely new, although the proofs are our own (except

where references are given).

Proposition 5.1.

Hypotheses:
1. Y= (yo, ¥y ...) 1s a sequence of real scalars having

a realization; i.e. ¥ satisfies a linear recursion (4.2) for some

positive integer r.

or

2. For each nonnegative integer Xk, p = pik) is the smallest integer
such that either the first p + 1 columns of Sik) are linearly dependent

p=r.

Conclusion:

(%)
&
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Proof. Let k be a fixed nonnegative integer.

By (4.2), the (r + 1)th column of Sgk), n>r, is a linear

combination of the first r columns.

By hypothesis 2, we have Aik) =0 ew== o <r, S5O

0 = I ===2b Aﬁk) # O. Therefore, the conclusion is trivial if p = r.

The result 1s also trivial for p = 0, sgince by definition,

Aék) =1 # 0.

Now suppose p=1r -d, 0 <d<r. By hypothesgis 2,

(k) (k1) o (k+a-1)
Ap+l = Ap+l = = Ap+l = 0, (5.2)
while at least one of the following determinants is nonzero:
k k+1 k+d
Aé ) Af) )., Aé ), (5.3)
By Lemma 3.1, for 0 <ec <4,
(kt+e),2 (ktc=1) , (k+c+l) (ktc=1) , (kt+c+l)
A = A A - A A . b
[ o P P o+l o-1 (5.4)
Suppose Aék) = 0. Then successive substitution of c =1, 2, ..., d

in equation (5.4) and use of (5.2) gives
Aék+°) = 0 (c=1, 2, ..., d).

Therefore all the determinants (5.3) vanish, contrary to the implication

of hypothesis 2. We conclude that Aék) £ 0.
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Theorem 5.2.

Hypotheses:

1. Y = (yo, yl’ ...) is a sequence of real scalars having
a realization; i.e., ¥ satisfies a linear recursion (4.2) for some

positive integer r.

(k)

2. For each nonnegative integer k, p = oy is the smallest integer
such that either the first p + 1 columns of Sik) are linearly dependent

or p=Tr.
Conclusion:

rank Sgk) = pgk), all k > 0.

Proof: We will carry out the proof for k = 0. For other values

(k)

n

of k, the subscripts of the y-element in each matrix § are increased

by the value of %k, but the method of proof remains the same.

By hypothesis, the first p = pio) columns of Sio) are linearly
independent, and thus span a p-dimensional subspace, say K, of the
r-dimensional Fuclidean vector space R°. Also by hypothesis, the

(p + 1)th column of Sio) is in the subspace K. We will show by

(0)

r lie in the subspace

mathematical induction that all the columns of S

(0)

K. Then the column rank of s'r

equals the dimension p of K, and

the conclusion of the theorem follows.

- 107 -




Column No.

1 2 3 oo o ptl J+l r
Row 1 0 1 2 cee p-1 o} cen J ces r-1
No.
2 1 2 3 con o] o+l . J+1 o r
r r+1 r r+l cos r+p-2 r+p-1 cee r+j-1 ces 2r-2
r+l r r+1 2 coe r+p-1 r+p oo r+j ‘e 2r-1

Table 5.1: Indices of elements in Sio) and in the row bordering Sgo)

Induction Hypothesis: Fix Jj, 0O < Jj; suppose the Jjth column in

Sio) is in K (i.e. the first p columns of S§O> and the Jjth column
are linearly dependent).
(0)

Conclusion: The (Jj + 1)th column in § is also in K.

r
Proof:

The result is trivial for 0 < j < p.

Suppose J > p. By realizability of the given sequence Y, the

(r + 1)th row of y-elements bordering Sio) is a linear combination of
the r rows of SiO). In other words, there exist r numbers Bi (i =1,
such that
v, Vi1
e+l I3
r
. = By . (5.5)
. i=1 .
yr+J L.yi+j-l

where the prime (?) denotes the transpose.
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By the induction hypothesis, the Jjth column is in X, so that there

exist (unique) numbers o (k =1, 2, «ee, p) such that

ole — svcy
Yi-1 i Ig-1
Y Vi
P
= by o (5.6)
=1
Vr+j-2 | Vrtk-2 |
Now
r
Vo 2 B,V .
r+j-1 121 i“k+j=-2
r p
= Z B ZQy.
i=1 1 k:]_(xk itk=2
o r (5.7)
= = 2 B.Y.
oy ko P k-2
o]
= z y
g W k-1
(5.7 ), together with (5.6 ), gives the desired result:
. -
Y541 5 Vi1
= bN .
2| (5-6)
REES! | Vr+k-1 ]

i.e. the (j + 1)th column of Sio) is in the subspace K spanned by

the first p columns.

- 109 -




Since the induction hypothesis is true for J = p+ 1 (definition

of p), it holds also for Jj=p+ 2, p+ 3, eoe

Lemma 5.3.

Hypotheses:

l. ¥ = (yb, yl, ...) is a sequence of real scalars having
a realization; i.e. ¥ satisfies a linear recursion (4.2) for some

positive integer r.

(k)

2. TFor each nonnegative integer Xk, p = o

is the smallest integer

such that either the first p + 1 columns of S(k) are linearly dependent

r
or p = T.
Conclusion: rank Sﬁk) = pik), for all n > p§k>, k> 0.
Proof:
For n = pék), the result follows from Proposition 5.1.

For n>r, we merely replace r by n in the linear recurrence
relation for Y. The new coefficients thus arising in the recurrence

relation are set equal to zero. Then Theorem 5.2 gives the desired result.

(k)

n

(1)

For p n <r, the column space of § has dimension at

(k)

least equal to oy s by Proposition 5.1. But its dimension cannot be

(k)

greater than the dimensionality of the column space of Sr

,  which is
pik), by Theorem 5.2. Therefore, we again have the desired result, and

the proof is complete.

Remarks: The above lemma generalizes a theorem by Ho [6, p. 28,

Theorem 2.12], who proved it for the special case k = O. Ho's theorem
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can be strengthened in another direction, as shown in the following theorem

and its corollary.

Theorem 5.4.
Hypotheses:
l. Y= (yo, ¥y ...) 1is a sequence of real scalars having
a realization; i.e. ¥ satisfies a linear recursion (4.2) for some

positive integer r.

2. For each nonnegative integer Kk, pik) is the smallest integer
such that either the first 1 + pik) columns of Sgk) are linearly
dependent or pik) = T,

3. rank Sio) = P

(0) . : .
b, The (p+ 1)th column of 8, '» n>p, fis the (unique) linear
combination
G ez e b
Yo Yo-i
Yot . Vomisl
N = Z Oéi . (5‘9)
. i=1 .
Y otn-1 Y omi+n-1
o s b i
where o = max {0, i: a £ 0}. {5.10)
Conclusion:
rank Sgk) max {p - k, o}, all k>0, n> p.

- 111 .




The significance of Hypothesis 4 is that it uniquely specifies o.

To show that the hypotheses are consistent, fix n > p. Independent columns

(0) (0).

n

in S are also independent in S By Lemma 5.3, rank S£O> = p.

Therefore the (p + 1)th column of Sgo) must be a unique linear combination

of the first p columns; that is, there exist unique numbers oA (i =1, 2,

such that
. - o _
yp yp»i
Yor1 5 Yomitl
. = z Oéi . (5.11)
. i=1 .
y N
-1 -~
A otn | | “p-i4n %4

Some (possibly all) of the a, may be zero. Let o =0 if all of
the o, are zero; otherwise let o = max (i oy # 0}. Then the sum in

(5.11) can be written as in (5.9 ), without loss of generality.

Now n in the preceding paragraph was an arbitrary integer greater
than p. Therefore (5.9 ) implies the linear recursion relation

[e)

vy ,. = 40V

s for j> O. (5.12)
3457 et
ot+J iop 1+ e-itd

Let Kn denote the column space of Sgo). Then (5.12) implies that

the columns of Sgk) all lie in Kn’ for every k >0, n> p. Moreover,

for every n > p, we have from 5.12.

rank Slgk) = p =Kk, k=0,1, ..., p~- 0;
(5.13)
rank Sgk) = 0, k > p-o.

The theorem is proved.
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Corollary 5.5 (Generalization of B.L. Ho's Theorem [6, p. 28])

Hypotheses: Same as in Theorem 5.k,

Conclusion: Among all possible Hankel matrices Sik) constructed

from the sequence ¥, +the largest nonsingular ones are
(1) Sé , 1f 0<o <p;
(ii) sék), k>0, if o= p.

Corollary 5.6.

Hypotheses: Same as in Theorem 5.h4.

Conclusion: The power series

£(z) = Zyizl (5.14)
=0

is a rational function with denominator of degree not more than p.

Furthermore, if o = p, then

by + bzt el + b _lzp'l
f(z) = £ , ¢, #0, c_ #0.
o) 0
Co 4+ CiZ + vee +C 3 P
0 1 P

Proof:

(i) Suppose O < o < p. Then, by Corollary 5.5,

Af}o) £ 0, Af)k) = 0 for k> 0.

Substitute q = p - 1 in Dienes' version of Lemme 3.2. Then f(z) is

gseen to be a rational function with denominator of degree at most p - 1.

(ii) ©Suppose o = p. Then, by Corollary 5.5, Aék) #£ 0, Aéﬁ% = 0,
for k > 0. Substitute p=p -1, qg=p in the Bieberbach version of

Lemms, 3.2. Then the desired result follows immediately from the lemma.
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Lemma 5.7. [27, pp. 302-305][28, pp. 1010, 1011]
Hypothesis:

F is & constant n X n matrix.

Conclusionss
1. (s1 - F)7L = 3(2 (5.15)
where d(s) = det (sI -F) = s + dlsn_l Foae+d,
(5.16)
and B(s) = Bosn_l + Bl.sm_2 + + B, 4

2. The coefficients d, of the polynomial d(s) and the matrix
coefficients Bj of the matrix polynomial B(s) are given by the

recursion formulas

1
¢ = - tr(Bk_lF), for k = 1, 2, ..., nj
(5.17)
Bk = Bk-lF + de, for k = 1, 2, ..., n-1;
By = I
3. B, {F + 4TI = O. (5.18)

For a proof of the lemma, see Desoer [27], pp. 302-305.

Comment:
The matrix rational function o(s) = (sI - F)-l is called the
resolvent of F. [29, p. 52] @(s) is also the Iaplace transform of the

state transition matrix, o(t) = exp (Ft).

It may happen that all the n2 elements of the matrix polynomial

B(s) have one or more factors in common with d(s). Cancellation of all
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such common factors leads to a simplified expression, namely,

@(S) - P(S
m s

where the polynomials m(s) and P(s) are the result of these cancellations.
Then m(s) is the minimal polynomial of the matrix F, i.e. the (monic)
polynomial of least degree such that m(F) = O; also, every eigenvalue

of F is a pole of (sI - F)-l, i.e. a zero of m(s).

For the purpose of computing @(s), (5.17) is a more efficient
procedure than Cramer's rule, the latter requiring nearly (n - 1)! times

as many multiplications as (5.17). [27, pp. 302, 306]

Theorenm 5.8.

Hypothesis:

Y = (yo, Yy ...) 1s a sequence of real scalars.
Conclusgion:

The following five statements are equivalent:

(1) ¥ has a minimal realization of dimension o.

(ii) ¥ satisfies a linear recursion of the form

P

Yy ,. = Zy

Yo aas J =0, 1, ... (5.19)
o+Jd 521 L P=iF]

where p is the smallest positive integer for which (5.19) is true.
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[o¢]
(iii) The function f(z) = 2 ykzk is rational of the form
k=0

b.+ bz + .. + D Z

0 1 -1
f(z) = 2 S » S £ 0, ¢, £ 0
CO+ClZ+...+CpZ
k
2% 20, x = 01, ... (5.20)
For each N > 0, there is n = n(N) > N such that
Aén) # O. (5.21)
(v) There exists a positive integer p such that
p = min {r: rank Sgo) =r, all n>r}. (5.22)

Proof:

The proof will be accomplished in two cycles:

First cycle: (ii) emsp (i) wesip (iii) == (iv); sep (ii);
Second cycle: (i) esslp (ii) w=gp(v) === (1).

(i1) e (i).

By Lerms 4.2, séi) = Mkséo) (i=0,1, 2, ...).
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The first element in Sél) is ¥y Therefore

- (D)o _ 1,(0)
v, = B8 VB! = ElMlSp E! (5.23)
and
F = M
I (o)
G = 8.'E (5.2k4)
H o=

is a realization of ¥, of dimension p.

By Lemme 4.3, the dimension of any minimal realization of ¥
is equal to the rank of Sgo).
Tt remsins to show that rank séo) = p, 1i.e. Aéo) £ 0. Since
p 1is the smallest integer for which (5.19) is true, then for each integer
o, 1< o0<p, there is an integer r(c) such that the oth column of
<(0)

(o) is linearly independent of the preceding o - 1 columns. Let

r = max {r(c), p}. Then p is the smallest integer such that the first
1<0<p |
(0)

p + 1 columns of Sr

are linearly dependent or p = r. By Proposition

5.1, we have Aéo) # 0. This completes the proof of (ii)=—s (i).

(i) sy (ddi).

Let (F, G, H) be a minimal realization of ¥. The transfer

function of the system (F, G, H) is
-1
Z(s) = H(sI - F)G (5.25)

where I 1s the p-dimensional unit matrix. We can write

1 F)-l

Z(s) % H(T - <

fi

G
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and, for sufficiently large s, express (I - % F)-l as a geometric
series. The result is

[o¢]

"Z2(s) = %H z (% F)kG = Zyks'k‘l. (5.26)
k=0 k=0
It is convenient to consider functions that are regular at O
rather than at infinity. We therefore put
1 ok
z = 3, sz(s) = f(z) = = V% e (5.27)

k=0
By Lemma 5.7, Z 1is a rational function of s, of denominator degree
g < p and numerator degree p = g - 1. It follows that f is a rational

function of 2z, with numerator and denominator degrees the same as Z.
To show that g = p, we use the following two facts:

(a) (F, G, H) is the minimal realization of a scalar sequence;
therefore F 1is a nonderogatory matrix, i.e. the minimal and the

characteristic polynomials of F coincide. [6, p. 47, Corollary 3.7]

(b) Suppose all factors common to the numerator and denominator
of Z(s) have been cancelled. Then the denominator is the minimal

polynomial of the matrix F. [27, p. 306]

The characteristic polynomial of F, A(s) = det [F - sI], is of
degree p. By (a), F is nonderogatory; so, the minimal polynomial is

of the same degree p. Therefore, (b) implies gq = p.

By Lemma 5.7, equation (5.18), the denominator of f has a nonzero
constant term. (Otherwise s would be a cancellable factor.) Thus,

f 1is a rational function,
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bo+ blZ+ ese + D 12
£(z) = 2 5 s ey 0 e # O. (5.28)
CO + ch + + Cc z
(1ii) sl (iv)

Invoking Lemme 3.2(i), we find that (5.28) implies

k
A;:)L = 0 forall k > O. (5.20)

Again, by Lemma 3.2(ii), p is the least value of g such that

Ztﬁéfizk is a polynomial. Therefore, given any nonnegative integer
k=0

N, there is n = n(N) > N such that

Aén) L o. (5.21)

(1v) e (ii).

Condition (5.20) implies that, for all n > p+ 1, the first

o+ 1 columns of Sgo) are linearly dependent. Condition (5.21),

however, implies that for sufficiently large n, the first p columns

of Sgo) are linearly independent. Therefore, q = p 1is the smallest

(0)

n are linearly

integer such that the first g + 1 columns of §
dependent for all n > 0. This, in turn, implies that q = p is the
smallest integer such that for all n >0, the (q+ 1)th column of
Sgo) is & linear combination of the preceding q columns. The

statement (ii) is an immediate consequence.

(1) === (i) s> (v) wwmde(i). [6; p. 25]

If a minimal realization for ¥ exists and has dimension p,

then (5.19) is true. This implies rank Sio) = rank Séo) = p, all
n > p. Since rank S(O) < p -1, we have shown that (ii) =3 (v).

p=1
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Conversely, suppose (5.22) is true for some positive integer p.

We appeal to the following lemma proved in Ho's dissertation [6; p. 20,
Lemma 2.7]:

"Suppose that rank S(O) = rank S(O) for some integer

T r+l1
r. Applying the algorithm (%.13) to the matrix sio)
produces (F, G, H) such that the fundamental relation
(Q)
\

HFkG = Yk is satisfied for every element of Sr+l’

that is, for kX =0, 1, 2, ..., 2r."

Now (5.22) implies rank S£O) =p, all n> p. Therefore applying
the algorithm (4.13) to the matrix séo) produces (F, G, H) such that

Hr'G = Vo kE=0,1,2 ... Therefore ¥ has a realization (F, G, H)

and the realization is minimal of dimension p, by Theorem 4.k.

The proof of the theorem is complete.
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VI. PARTTAL, REALTIZATION OF SCALAR SEQUENCES.

The last theorem of Chapter 5 gave four distinct sets of con-
ditions, each set being necessary and sufficient for a given scalar
sequence to be realizable in the strict sense used by B. L. Ho. We
novw turn our attention to the following two problem areas: One is the
approximate realization of sequences which do not meet the realizability
criteria of Theorem 5.8. The other problem concerns the partial,
approximate realization of sequences which are known to be realizable in

the strict sense.

The two problems can be treated as one, mathematically. This

becomes evident from the following definitions.
6.1 Definitions.

Suppose Y = (yO, ¥y ...) is a sequence of real numbers.

The sequence ¥ 1is called p-realizable if it is realizable and

if p 1g the smallest positive integer for which the recursion formula

P

y . = 2oy

Lipar 3 =0, 1, ... (6.1)
ptJ jo1 b P-1t]

is true. If ¥ 1is not realizable, we set p = o,

Suppose r 1is a positive integer, and (Fr’ Gr’ Hr) is an ordered
triple of matrices computed from Ho's minimal realization algorithm using
the matrices Sio) and Sil) associated with ¥. Then (Fr’ G.s Hr) is

called a linear model of order r for Y.

For the sake of clarity, the phrase realizable in the strict sense

will be used if a sequence Y is p-realizable, p <=,
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A linear model of order r 1is called a partial realization (of order r)

for ¥ if ¥ 1s p-realizable, p>1r, or if ¥ is not realizable in

the strict sense.
Remarks.

If ¥ is p-realizable, p <o, then any linear model of order p
(or greater than p) is a minimal realization, while any linear model of
order legs than p 1is a partial realization. This follows immediately
from the definitions and the theorems of Chapter 4, especially Theorem 4.9

and its corollary.

Suppose (Fr’ G, Hr) is a partial realization for ¥, and that

the elements x_ of the sequence % = (xo, X5 «..) are given by

k
x, = HF G, k=0,1, .... (6.2)

The sequence & 1is uniquely determined by ¥, r, and by the choice of

the submatrices BT and CJr of P and Q, respectively. (See conclusion
2 of Proposition 4.11.) The map ¥ —» % and its approximating properties thus
may possibly depend on the particular choice of the partial realization. The

related questions can be usefully studied as projection problems. [37]

6.2 Elementary Properties of Partial Realizations.

Proposition 6.1.

Hypotheses:
l. ¥ is a p-realizable sequence, p <=.

2. (Fr’ G Hr) is a linear model of order r for Y.
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Conclusions
1. (Fr’ Gr’ Hr) is a minimal realization for ¥ if, and only if,

r Z p.
2, dim Fr =p if r 2z py dim Fr sr if r < p.
Proof:

Since ¥ 1is p-realizable, p <, g linear recursion of the form
(6.1) holds for ¥, with upper limit p. By Proposition 4.1, ¥ has a

realization.

By definition, p 1is the smallest integer for which the recursion
(6.1) is true. Therefore, Theorem 5.8 implies that every minimal realization
for ¥ has dimension p. By Theorem 4.k, dim F = rank Sio).

(1) Suppose r = p.

Then, rank Sﬁo) = p [6; p. 25, Corollary 2.9], and, by Theorem k.l

(Fr, G_.; Hr) is a minimel realization for ¥, dimF_ = o.
(ii) Suppose r < p.

Clearly, rank Sio) £ r, gince the elements of ¥ are scalars.
But dim F_ = rank Sio), by Theorem 4.4. Therefore, dim F.sr <p.
Every minimal reaslization for ¥ has dimension p. Therefore (Fr’ G5 Hr)

igs not a minimal reglization.
The proof is complete.

Corollary 6.2.

Partial realization .for a given scalar sequence ¥ are not

realizations in the strict sense.
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Theorem 6.3.

Hypotheses:

1. ¥= (YO: ¥y veo),

2. r 1s a positive integer such that Aio) # 0.
3. (F, G H)

Conclusion:

is a linear model of order «r

HRG = Vo K o= 0, 1, ..., 2r - L.

Proof:

By hypothesgis 2, S = Sio) has an inverse S_l

(r X 1) wvector o by

Then

£(0)

L yer-l_d

which means thsat

‘is a sequence of real numbers.

for Y.

Define the

cesy 2r - 1.

(6.3)

(6.4)




Define & seguence % = (x

X = Vo k=01, o0y r -1 (6.5)
r

X;_k = ZO,'i ‘iy k=I‘, I‘+l, s e 0 (6.6)
i=1

We observe:

(i) The sequence & satisfies a linear recurrence relation and

therefore has a realization, by Proposition 4.1.

(ii) The first 2r terms of the &-sequence are the same as the

first 2r terms of the Y-sequence.

(iii) The matrices Sﬁo) and Sil) are completely determined by

the first 2r terms of the ¥Y-sequence.

(iv) The coefficients {co,} of the vector « are unique because

8 1s nonsingular.

By Theorem 4.4, (F, G, H) determined from the first 2r terms of
the Z-sequence is a minimal realization for the Z-sequence. Because

of hypothesis 2, dim F = r. Now

PG

]

x, forall k= 0. (6.7)
But, as observed in (ii), % = ¥V k=0, 1, ..., 2r - 1. Therefore

H'G =y, for k=0, 1, ..., 2r - 1, (6.8)

(0) and S(l).

where (F, G, H) are determined by 5, r

The proof of the theorem is complete.

-125 .




Corollary 6.4. (Note: This is a special case of B.L. Ho's Lemma

2.7 [6, p. 20] and [38, Theorem 2].)
Hypotheses:

1. ¥ = (yb, yi, cee) is a sequence of real numbers.

Q-

2. r 1is a positive integer such that Aio) £0, A

3. (F, G, H) is a linear model of order r for 9.

Conclusion:
HFkG = W k=0, 1, .., 2r.
Proof:
By Theorem 6.3, HFG = Vo K=0,1, ..., 2r = 1. (6.8)

A£O> # 0 implies the first r columns of Siii are linearly

independent. Let their span be X. Then A(O) = O implies that the last

r+1
(0)

rtl is in X. Therefore there exist unique coefficients

column of §
ai, i=1, 2, «os5 ¥, such that

r

yr+j = i‘::laiyﬂj-i’ J=0,1, «e., 1o (6.9)

The first r equations of the set (6.9) are identical with (6.4). The
coefficients fa&} are uniquely determined by (6.12), as was observed in
comment (iv) of Theorem 6.3. Therefore the {O&} in (6.4) and (6.9) must

be the same.

Proceeding as in Theorem 6.3, we get a realizable sequence

Z = (xo, e ...) and a triple of matrices (F, G, H) such that

HF'G = x, all k20 (6.10)
r
X = Lox ., k=1 r+ 1, e (6.11)
i=1
X}{ = yk, k = O, l, co0ey r - lo (6.12)

- 126 -




Now (6.8) to (6.12) imply

k
HFG = x = y, for k=0,1, ..., 2r. (6.13)
The corollary is proved.

6.3  Approximating Properties of Partial Realizations.

Theorem 6.5.
Hypotheses:

l. Y= (yb’ ¥y .+.) 1is a sequence of real numbers.

2. r is a positive integer such that Aio) £ 0.
3. (F, G, H) is a linear model of order r for ¥.

Conclusion:

The rational function

R(z) = H(I - zF)"lG (6.14)

is the (r, r - 1) Pade approximant for the power series

f(z) = Zykzk. (6.15)
k=0
Proof:
The hypotheses are the same as those of Theorem 6.3. As shown in
that theorem, (F, G, H) is & minimal realization for the sequence

% = (x, X, «o.) defined by (6.4) to (6.6). The dimension of the

o’ "1V

reglization is r, by hypothesis 2.

The transfer function of the system (F, G, H) is

Z(s) = H(sI - F) G

-:-SL-H(I . %F)'lG.

(6.26)




w -

ILet 2z = -, then

N

z(%) = H(T - zF)'lG = R(z). (6.27)

Now R(z) is a rational function of the form

b.+b.z+ ... +D Z
R(Z) 0 1 rel

, cs #£0, c # 0. (6.28)
0] r
ChF+ C.Z + ous + C_7Z
0 1 r

The proof is contained in the proof of Theorem 5.8, equation (5.28).
Because of (6.28), R(z) satisfies the defining condition I of the

(r, r - 1) Padé approximant for f:

deg B = r - 1, (6.29)
deg C = r; (6.30)
where B = numerator polynomial of R,
C = denominator polynomial of R.
It remains to show that
£(z)c(z) - B(z) = (). (6.31)

For sufficiently small values of =z, we have

= ; k = ; zk 6.3
R(z) H£=O(ZF) G k=Oxk (6.32)

where X0 k=0, 1, 2, ..., are the elements of the sequence <.

By Theorem 6.3,

X, = Yo k=0,1, ..., 2r-1 (6.33)
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Therefore,

f(z) - R(z) = = (yk - xk)z = (279). (6.34)
k=2r
Multiply both sides of (6.34) by C(z) = Co F egZ  een k crzr. Then
(6.31) is obtained, and condition II of the (r, r - 1) Padé approximant

for f is satisfied by R(z).
The proof of the theorem is complete.

Corollary 6.6.

Hypotheses:

[e9]

k
1. f(z) = Zy.z, y . #0 (6.35)
k 0
k=0
is a power series whose Padé table is normal.

2. (F, G, H) is a linear model of order r for the sequence

Y = (yo, yl, ...).

Conclusion:
The transfer function of the system (F, G, H) is the element

Eﬁo) in the E-array for the function

(s) = Zys . (6.36)
k=0

Proof’:
Since f has a normal Padé table, Theorem 3.5 implies that
Aio) # 0. Therefore, H(I - ZF)—lG is the (r, r - 1) Padé approximant

for f, as shown in Theorem 6.5.

The transfer function of the system (F, G, H) is

. _ ) -1 _ ; S—k-l 6.3
7.(s) H(sI - F) G k=Oxk (6.37)
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Whel'e )C_k, = HFkG, k = O, l, see¢ o (6938)
Let (Pr, 1’ Qr,r-l) be the (r, r - 1) Padé pair for f.

By Theorem 6.5,

: r-1
Pr’r_l(z) = by + Dbz oo +b Lz
(6.39)
Q, r_l(z) = o+ 0Bk el crzr, cy # 0, c.. #£ 0.
By Proposition 2.10 and the definition of the E-array,
(0)
2O (r, &) = Py (s) (6.10)
A S I () PN '
Q, (s)
 where [equations (2.64)]
Pio)(s) = z-r+lPr,r_l(z), sz = 1
and (6.41)
Qéo)(s) = Z-rQr,r-l(Z)’ sz = 1
Now (6.39) and (6.40) give
zP_ .(2)
Eio)(T, s) = E;ELEL%;7— P sz = 1,
,r=l
= zR(z), by (6.28)
- (6.42)
‘ k-1
= X.X5 by (6.32)
k=0Xk ’
= Z(s).

The proof of the corollary is complete.

- 130 -




VII. CONCLUSIONS AND FUTURE RESEARCH AREAS.

Starting with B, L. Ho's algorithm for computing linear models
from input-output data, we have studied the relation between the realized
system matrices (F, G, H) and certain rational approximations related
to the formal power series whose coefficients are the Markov parameters.
For scalar sequences of Markov parameters, Y = (yo, yl, ~~~),_the system
matrices (F, G, H) computed by B. L. Ho's algorithm are shown to have
the following property: Suppose ¥ is a normal sequence (i.e., % ykz

has a normal Padé table), then the transfer function H(sI- F)'lG lies

on the diagonal of the E-array for ¥ .

Deeper results require research into the properties of E-arrays
for nonnormal sequénces. With this aim, we have developed an explicit
determinantal expression for Padé approximants which is valid for both
the normel and the nonnormal case (Theorem 3.7). The extension of this

work to the E-array should be straight-forward, even if tedious.

By concentrating attention on the leading terms of a given sequence

Y , the Padé approximation emphasizes the high-frequency response of a

linear model for ¢ . This approach, while desirable for many appli-
cations and interesting from a theoretical standpoint, has certain
limitations. For instance, in modeling a linear system from noisy
input-output data, one would want to emphasize a pass-~band rather than
the high end of frequency-response spectrum. This important problem
is therefore likely to require some modification of the methods of the
Padé approach. A possible alternative to be considered is the uniform

(Chebychev) approximation.
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Besides confining attention to the Padd approach, our research
on the approximating properties of linear models has been restricted to
single input-single output systems. The restriction allowed the important
issues and steps to stand out in the investigation. Extension of the
results to multivariate systems may be possible, at the cost of increased

complexity in the derivations.

As a byproduct of our study, we derived reciprocal relations between
a minimal realization (F, G, H) and the corresponding pair of matrix
factors (V, W). The result, found in the Unique Representation Theorem
and its corollary, is a refinement of Ho's algorithm. The intrinsic
elegance of the relations presented in the corollary is accompanied by
computational advantages compared with the earlier formulation of the
algorithm by B. L. Ho. kFuture research may be able to exploit the
one-to=-one correspondence established here for the first time, and

uncover its deeper theoretical significance.
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Appendix A. Some Definitions in Algebra

1. Formal Power Series [9, p. 146]

et X be a letter and let N be the set of nonnegative integers
(i.e. the natural numbers). Let G be the monoid of functions from the

set (X} to N.

If k eN, let Xk denote the function in G whose value at X
is k. Then G = (XO, Xl, Xg, cees Xk, eee), and x* is a monomial
whose index v is called its degree. As a matter of notation, "degree"

is often abbreviated "deg".

Let R be a commutative ring, and let R[[X]] Dbe the set of
functions from G into R, without any restriction. Then an element
of R[[X]] may be viewed as assigning to each monomial Xk a coefficient

2 € R. We denote this element by

The summation symbol here is not a sum, but the expression is also

written in the form

0 1
aOX + alX + oo

and is called a formel power gseriesg in one variable, with coefficients

a in R.

O, a.l, & c o

Addition and multiplication of two elements in R[[X]], say

o] [s9]
f = Z aka and g = X kak,
k=0 k=0

are defined as follows:

.=:]_33-




. (& + bk)Xk

f+g =
k=0
fg = X Ckxk
k=0
where ¢ = Z a bv. (Note: With these definitions of addition and

utv=k
multiplication, the set R[[X]] becomes a commutative ring.)

x

Iet £ = Z aka be a nonzero power series. The smallest index
k=0
k for which a # 0 is called the order of f, denoted by o(f). The

zero element of R[[X]] is said to be of order + ». [19, p. 129]

2. Polynomials [9, p. 118]

Polynomials in one variable with coefficients in R can be

identified with formal power series as follows:

If f ¢ R[X] and f = aOXO + ale Foa.. ame, then we identify
f with the power series X aka, where &y = 0, Vk >m. Thus, the
k=0

polynomials in one variable in R[X] are identified with the subset of
functions ¢ —» R in R[[X]] which are zero for almost all elements of

G. [9, p. 110]

The degree of f, denoted by deg f, 1s the largest index k for

which 8 # O. The zero polynomial is said to be of degree -~ «. If

deg £ = m, then a, # 0O by definition, and a, is the leading coefficient

of f. A monic polynomial has leading coefficient equal to unity.

If f, g € R[X], then we have:

deg (f, g) < max(deg f, deg g).

- 134 -




Also deg(fg) = deg £+ deg g if R 1is an integral domain,provided at

least one of the leading coefficients of £, g 1is not a divisor of zero.

If £, g € RI[X]], then [Zariski and Samuel, II p. 129]

o(f, g) Z min(o(f), U(%))'
Also

o(fg) = o(f) + o(g)
if R is an integral domain.

3. Rational Functions [9, p. 116]

If ¥ 1is the quotient field of &n integral domain R, the quotient
field of R[X] 4is denoted by K(X). An element of K(X) is called a

rational function. A rational function can be written as & quotient

f(X)/g(X) where f, g are polynomials.

Two nonzero polynomials f, g are called relatively prime if

f and g have no common factors other than constants. If f and g
are relatively prime, the rational function f(X)/g(X) is sometimes

called "irreducible"”. [2, p. 153], [10, p. 106], [17, p. 398].
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Appendix B, The Pseudo Inverge of a Matrix

1. Definition [7, p. 197]

Let A be an arbitrary (finite) matrix. A matrix AT s called

the pseudo inverse of A 1if the following hold:

AATA = A, ATAAT = AT (B.1)
(AJFA)' = ATA, (AAT)' = AA,T (B.2)

For an alternative, equivalent definition, see Moore's theorem

in Section 3.

2. Construction [31, p.9]

Let A De an arbitrary p X m matrix, rank A = n. Suppose B

and C are matrices with the following properties:

(i) B is a p Xn matrix whose n columns are a basis for the

column space of A,

(i1) ¢ is a n Xm matrix whose n rows are a basis for the row

space of A.
(iiid) A = BC. (B.3)

Then, by the "Theorem of Corresponding Minors" [31, pp. 14, 15],
(B'B) and (CC') are nonsingular n X n matrices. The pseudo inverse

of A is given by

.l,.

A = c'(cce)"l(B'B)“lBu (B.Lt)




3. Existence and Unigueness Theorems [34, pp. 600, 601]

Moore's Theorem [35, p. 197-203]:

Given a finite matrix A, there is a unique matrix Ai (called

"seneral reciprocal" by Moore) such that, for suitable matrices L and R,
*
AMA = A, A = IA = AR. (B.5)
This Ai satisfies
YUY (B.6)

ot *
and AA , A A are Hermitian matrices. (Note: A  is the conjugate
transpose of A.)

Proof: [34, p. 600]

(i) ILet n = rank A. There are nonsingular matrices P and Q

such that
T 7
- 0l
m
PAQ = | = Jd (B.7)
L0 OJ'
is the canonical diagonal form of A. [22, vol. I3 p. 141]
t * . s t
Then A = QJP satisfies AA A = A. (B.8)
Express the columns of AT as sums of vectors in the column
* *
subspace of A  and vectors orthogonal to the columns of A ¢
+ *
A = AX2+X3, AX3 = 0. (B.9)
Similarly, write
*
Xo = XA + X5, XA = 0. (B.10)

- 137 -




Then

h=3
]
=
=4
i

A[A*(XEA* + %) + XA

% %
AA XAA A.

Hence (B.5) holds if we take

+ * *
L A

= AX,
R = XA

- x4

This proves the existence part of Moore's theorem.

(ii) If AXA =0, X =7YA =A'Z, then

]

(ax) (ax)° = Aaxxa’ = Aax(va)" A" = (axa)Y'A® = o
implies AX = 0. But then we have
XX = (82)%x = Z2(&X) = 0 X = O.

Hence all solutions At or (B.5) are the same. This proves the

uniqueness part of Moore's theorem.

(iii) Since (AA*A)A*A = A, and, by (B.11),
T o7 * * ¥ ¥ * *
AAL = (A XA JA(A X)A ) = I,A = AR,
n L AT A A" AT an"x A
wnere 1 = X)-L Xl;.’ Rl = XL{. 4 9

it follows that (ATAAT) satisfies Moore's conditions (B.5) for the

. . T
pseudo inverge. By uniqueness of A, we have

(B.11)




t+ * * *
(iv) aa" = (aa'x)A" = A(a" qu al o aaTA™ A
] * ¥
VU VL
. T To* :
Similarly, A A = (A A) . This completes the proof of Moore's

theorem.

Penrose's Theorem [33, pp. 17-19]

Given a finite matrix A, +there is a unique matrix AT (called

"generalized inverse' by Penrose) such that

a'a = A (aahy* = '
(B.12)
atant = A (a'a)* = a'a.

Proof: [34, p. 601]

Let A Dbe fixed. If AT, L, R satisfy (B.5) and (B.6), then

(B.12) holds, so AT exists.

Conversely, if (B.12) holds, then

* . Kk
A o Aty - atwah)t - @'a™a
* *
AT - (ATA)AT = (ATA) At oo (AJr AT)
t % t% t

Hence (B.5) follows, with L =AA , R=A A . Therefore, by

-t.
Moore ‘s theorem, (B.12) has exactly one solution A .

This completes the proof of Penrose's theorem, and furthermore

proves the

Corollary:

. T
Moore's and Penrose's definitions, of the pseudo inverse A of a
given finite matrix A, are equivalent.
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L. Properties [31, pp. 8, 91[32, p. 15]

Let A Dbe an arbitrary p X m matrix, rank A = n, and let A]L

be the pseudo inverse of A, .as defined in Section 1. Let B and C

be constructed as in Section 2.

. t . . . .
(i) A exists and is unique. (Penrose's theorem, see Section 3.)

(ii) If A is nonsingular, then AT _ 4=1

T
(1ii) (A )Jr = A.
. t N . .
(iv) AA = B(B'B) "B' is the unique orthogonal projector for
the column space of A, i.e. given any p X 1 wvector x, AATX is the

orthogonal projection of x wupon the column space of A.

Similarly, AfA.‘= c'(cc')"lc is the unique orthogonal projector

for the row space of A.
t t L .
(v) AA and A A are symmetric, idempotent matrices.

(vi) The row space of Ai ig the column space of A; the column

space of AT is the row space of A.

(vii) BT is & n X p matrix whose rows span the column space of

Aj CJr is a m X n matrix whose columns span the row space of A.

(viii) B = 1 3 cc = I.
n n

(ix) At - CTEf.
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